Tetsu-to-Hagane
Online ISSN : 1883-2954
Print ISSN : 0021-1575
Transformations and Microstructures
Effect of Boron Addition for on Time Temperature Transformation Behavior in Si Added High Carbon Steels
Toshiyuki ManabeShingo YamasakiSeiki NishidaToshiharu Sugawara
Author information
JOURNALS FREE ACCESS FULL-TEXT HTML

2019 Volume 105 Issue 1 Pages 69-75

Details
Abstract

In high carbon steel, TTT nose temperature rises and upper baninte becomes easy to be formed with quantity of Si addition. Generation of upper bainite is reduced by boron addition. In this study, the influence of boron addition on isothermal transformation behavior in Si-added high carbon steel was clarified. By boron addition, lamellar spacing and growth rate of pearlite doesn’t change, but the nucleation of pealite is reduced. But nucleation of pearlite is promoted when Fe23(C,B)6 precipitates. In the Si-added high carbon steel, upper bainite is often formed with the generated ferrite on prior austenite grain boundary. It is inferred that boron reduces ferrite generation in grain boundary which causes upper bainite formation. It is confirmed that effective existence state of boron is grain boundary segregation.

Information related to the author
© 2019 The Iron and Steel Institute of Japan
Previous article Next article
feedback
Top