鉄と鋼
Online ISSN : 1883-2954
Print ISSN : 0021-1575
ISSN-L : 0021-1575
相変態・材料組織
純鉄の冷間圧延・焼鈍過程におけるEBSD測定値を入力値とした再結晶のフェーズフィールド数値解析
諏訪 嘉宏 冨田 美穂田中 泰明潮田 浩作
著者情報
ジャーナル オープンアクセス HTML

2019 年 105 巻 5 号 p. 540-549

詳細
抄録

A unified theory for continuous and discontinuous annealing phenomena based on the subgrain growth mechanism was proposed by Humphreys about twenty years ago. With the developments in the unified subgrain growth theory, a number of Monte Carlo, vertex and phase-field (PF) simulations have been performed to investigate the nucleation and growth mechanisms of recrystallization by considering the local alignment of the subgrain structure.

In this study, the effects of the microstructural inhomogeneities created in the deformed state on recrystallization kinetics and texture developments were investigated. Numerical simulations of static recrystallization were performed in 3D polycrystalline structures by coupling the unified subgrain growth theory with PF methodology. In order to prepare the initial microstructures, 2D electron back scattering diffraction (EBSD) measurements were performed on 90% and 99.8% cold-rolled pure iron. Our previous experimental study has shown that the texture formation processes in the recrystallization of those samples have large difference.

In cold-rolled iron with 90% reduction, simulated texture exhibited nucleation and growth of γ-fiber (ND//<111>) grains by consuming α-fiber (RD//<011>) components, where ND and RD denote normal direction and rolling direction respectively. On the other hand, in cold-rolled iron with 99.8% reduction, simulation results reproduced the high stability of the rolling texture during recrystallization. As a consequence, the simulation results were in good agreements with experimentally observed textures in the both samples.

Fullsize Image
著者関連情報
© 2019 一般社団法人 日本鉄鋼協会

This article is licensed under a Creative Commons [Attribution-NonCommercial-NoDerivatives 4.0 International] license.
https://creativecommons.org/licenses/by-nc-nd/4.0/
前の記事 次の記事
feedback
Top