鉄と鋼
Online ISSN : 1883-2954
Print ISSN : 0021-1575
ISSN-L : 0021-1575
論文
Si添加鋼の合金化挙動に及ぼすSi/Mn比の影響
宮田 麻衣 伏脇 祐介鈴木 善継永野 英樹長滝 康伸
著者情報
ジャーナル オープンアクセス HTML

2019 年 105 巻 7 号 p. 683-692

詳細
抄録

The influence of the Si/Mn ratio on the galvannealing behavior of 1.5 wt% Si -1.5~2.5 wt% Mn-added steel in the Fe oxidation-reduction process was investigated. The Si/Mn ratio of the steel affected the formation of Si-containing oxides during the annealing process. The amount of SiO2 formed on the steel surface decreased with as the Si/Mn ratio decreased, while the amount of Mn2SiO4 increased. In addition, the internal oxide formed in a relatively narrow area near the surface in the lower Si/Mn ratio sample, which indicated that the content of solute Si near the surface was lower in the lower Si/Mn ratio sample. The galvannealing reaction was accelerated by decreasing the Si/Mn ratio of the steel. The species and morphology of the Si-containing oxides determined the galvannealing behavior of the Si-added steel. The Si-containing selective surface oxide affected the formation of the initial Fe-Zn intermetallic compounds (IMC) during hot-dipping in molten Zn. The formation of SiO2 was suppressed in the sample with the lower Si/Mn ratio, which resulted in accelerated Fe-Zn IMC formation. On the other hand, solute Si in the steel affected the growth of the Fe-Zn IMC during heating in the galvannealing process. The content of solute Si was assumed to be lower in the lower Si/Mn ratio sample, which resulted in acceleration of Fe-Zn IMC growth.

著者関連情報
© 2019 一般社団法人 日本鉄鋼協会

This article is licensed under a Creative Commons [Attribution-NonCommercial-NoDerivatives 4.0 International] license.
https://creativecommons.org/licenses/by-nc-nd/4.0/
前の記事 次の記事
feedback
Top