Tetsu-to-Hagane
Online ISSN : 1883-2954
Print ISSN : 0021-1575
ISSN-L : 0021-1575
Surface Treatment and Corrosion
Crystal Structure Analysis of Top Dross in a Molten Zinc Bath by First Principle Calculation and Synchrotron X-ray Diffraction
Takeshi Konishi Hideaki SawadaTakashi DoiKohsaku Ushioda
Author information
JOURNAL OPEN ACCESS FULL-TEXT HTML

2020 Volume 106 Issue 4 Pages 205-213

Details
Abstract

In a molten zinc bath in a continuous galvanizing line, top dross particles crystallize as Fe2Al5 intermetallic compound containing Zn, which causes the surface defect of the final products by easily adhering to steel sheets. The present study focused on the analysis of crystal structure of the top dross by simultaneously exploiting first principle calculation and synchrotron X-ray diffraction of top dross prepared in a laboratory. The following results were obtained: The first principle calculation on top dross suggested that two Al atoms in the partially occupied four Al sites of Fe2Al5 based on the crystal structure proposed by Mihalkovič et al. were replaced by two Zn atoms. In addition, Al atoms in the two kinds of partially occupied Al sites in Fe2Al5 proposed by Burkhardt et al. was equally replaced by Zn atoms. The propose crystal structure of top dross was verified by the X-ray diffraction profile analysis using RIETAN-FP simulation as well as the experimentally determined lattice constant of Zn containing top dross.

Fullsize Image
Content from these authors
© 2020 The Iron and Steel Institute of Japan

This article is licensed under a Creative Commons [Attribution-NonCommercial-NoDerivatives 4.0 International] license.
https://creativecommons.org/licenses/by-nc-nd/4.0/
Previous article Next article
feedback
Top