Tetsu-to-Hagane
Online ISSN : 1883-2954
Print ISSN : 0021-1575
ISSN-L : 0021-1575
Mechanical Properties
Effects of Si and Mn Contents on V-bending in High Strength TRIP-aided Dual-Phase Steel Sheets with Polygonal Ferrite Matrix
Akihiko Nagasaka Tomohiko HojoMasaya FujitaTakumi OhashiMako MiyasakaYuki ShibayamaEiji Akiyama
Author information
JOURNAL OPEN ACCESS FULL-TEXT HTML

2021 Volume 107 Issue 2 Pages 154-164

Details
Abstract

Effects of Si and Mn contents on V-bending in high strength TRIP-aided dual-phase (TDP) steel sheets with polygonal ferrite matrix were investigated for automotive applications. V-bending test was performed on a hydraulic testing machine using a rectangular specimen (50 mm in length, 5 mm in width, 1.2 mm in thickness) and 88-degree punch (2.0 mm in punch radius) and 88-degree die (12 mm in die width, 0.8 mm in die radius) at a processing speed of 1 mm/min. The main results are as follows.

(1) The 0.2C-(1.0-2.5)Si-(1.0-2.0)Mn, mass% TDP steel sheets were able to perform V-bending by strain-induced martensitic transformation of TRIP effect.

On the other hand, ferrite-martensite dual-phase (MDP0) steel sheet of 900 MPa grade was not able to perform 90-degree V-bending because of initiation of crack in tension area.

(2) The 0.2C-2.5Si-1.5Mn, mass% TDP-G steel sheet of 980 MPa grade was able to enable the 90-degree V-bending that considered an amount of springback (Δθ=θ2θ1), in which the θ1 and the θ2 are a bending angle on loading and a bending angle after unloading respectively, of more than 2-degree by controlling a displacement of punch bottom dead center.

Fullsize Image
Content from these authors
© 2021 The Iron and Steel Institute of Japan

This article is licensed under a Creative Commons [Attribution-NonCommercial-NoDerivatives 4.0 International] license.
https://creativecommons.org/licenses/by-nc-nd/4.0/
Previous article Next article
feedback
Top