2023 Volume 109 Issue 9 Pages 770-778
We analyzed the crystal orientation of pure iron with two-way cold-rolling and subsequent annealing. As-received pure iron sheets were cold-rolled in the vertical direction against the cold-rolling direction of the as-received sheet, and then in the cold-rolling direction of the as-received sheet. The cold-rolled specimens were annealed in two conditions (short-term and long-term annealing). As short-term annealing, cold-rolled specimen was heated to desired temperature, and then water-quenched to room temperature (298 ± 2 K). As long-term annealing, cold-rolled specimen was heated to 1123 K and held for up to 180 min, and then furnace-cooled for up to 150 min and water-quenched to room temperature. The strain distribution of cold-rolled specimen was uniform, and Goss orientation grains were observed at the interface of α-fiber and γ-fiber and within the micro-shear bands in γ-fiber. By short-term annealing, Goss orientation grains within micro-shear bands grew, whereas those at the interface of α-fiber and γ-fiber disappeared. Abnormal grain growth of Goss orientation grains was attributed to the existence of grains having Σ9 grain boundaries against Goss orientation grains. In addition, existence of multiple adjacent Goss orientation grains played crucial role on the abnormal grain growth of Goss orientation grains.