鉄と鋼
Online ISSN : 1883-2954
Print ISSN : 0021-1575
ISSN-L : 0021-1575
論文
一方向凝固材のミクロ偏析/組織における介在物分布の評価手法の開発
高橋 昴SCIAZKO Anna中本 将嗣 鈴木 賢紀江阪 久雄鹿園 直毅吉川 健
著者情報
ジャーナル オープンアクセス HTML

2025 年 111 巻 3 号 p. 95-104

詳細
抄録

The formation of inclusions during solidification in steelmaking process is a critical issue for the optimal processing and the quality of steel products. Therefore, it is required to clarify the mechanism on the inclusion formation for its adequate control. In the present work, the evaluation method of inclusion distribution via the combination of inclusion positions analysis and image analysis of dendrite structure with machine learning is proposed. Image analysis using a conditional deep convolutional generative adversarial network enabled the detection of domain boundaries and the directions of secondary dendrite arms in the cross-sectional structure of unidirectionally solidified specimens. In addition, by combining this with the analysis of inclusion position, a correlation was confirmed between micro segregation behavior and the formation behavior of TiN inclusions.

Fullsize Image
著者関連情報
© 2025 一般社団法人 日本鉄鋼協会

This is an open access article under the terms of the Creative Commons Attribution-NonCommercial-NoDerivs license.
https://creativecommons.org/licenses/by-nc-nd/4.0/
前の記事 次の記事
feedback
Top