鉄と鋼
Online ISSN : 1883-2954
Print ISSN : 0021-1575
ISSN-L : 0021-1575
論文
Ti炭窒化物を異質核としたFe–22mass%Mn–0.7mass%C–0.3mass%Ti合金における準安定フェライトの等軸晶凝固
鳴海 大翔 太田 誠藤田 健吾勝部 涼司安田 秀幸
著者情報
ジャーナル オープンアクセス HTML
電子付録

2025 年 111 巻 3 号 p. 163-174

詳細
抄録

This study demonstrates the effect of Ti addition on phase selection and subsequent ferrite-austenite transformation in Fe–22mass%Mn–0.7mass%C alloy, where the austenite is the primary phase in equilibrium. X-ray radiography revealed that the metastable ferrite nucleated as equiaxed grains in the completely melted specimen. During subsequent cooling, the metastable ferrite massively transformed into the austenite in the solid state, forming multiple austenite grains in each metastable ferrite grain. The ferrite-austenite transformation was immediately followed by the coarsening of multiple austenite grains within each former metastable ferrite grain. Typical austenite grain size ranged from 100 to 500 μm. In the specimen after the observation, titanium carbonitride (Ti(C,N)), which acts as heterogeneous nucleation agent for the ferrite, was presented and overlaid manganese spinel (MnAl2O4) or Al-Ti oxide. Because disregistry between such oxides and Ti(C,N) can be relatively low, the oxides facilitated the formation of Ti(C,N) in the melt. Regarding the formation of the oxides, it can be postulated that titanium oxides, as a deoxidation product, first combined with soluble Al, Mn, and O to form liquid Al–Mn–Ti oxides. During cooling, MnAl2O4 or Al–Ti oxide was supersaturated in liquid Al-Mn-Ti oxides, which subsequently crystallized and dispersed in the melt. Thus, titanium oxide serves as a precursor to a multistep reaction leading to the formation of Ti(C,N), and its fine dispersion in the melt allows us to control the austenite grain size in the as-cast microstructure through promoting the metastable ferrite nucleation followed by the ferrite-austenite transformation.

Fullsize Image
著者関連情報
© 2025 一般社団法人 日本鉄鋼協会

This is an open access article under the terms of the Creative Commons Attribution-NonCommercial-NoDerivs license.
https://creativecommons.org/licenses/by-nc-nd/4.0/
前の記事 次の記事
feedback
Top