リン酸イットリウム共沈分離—電気加熱原子吸光分析
による鉄鋼中の微量鉛の定量

加賀谷 重浩*・梯 佳世子*・長谷川 淳*

Determination of Trace Lead in Iron and Steel by Electrothermal Atomic Absorption Spectrometry after Coprecipitation with Yttrium Phosphate
Shigehiro Kagaya, Kayoko Kakehashi and Kiyoshi Hasegawa

Synopsis : The coprecipitation technique using yttrium phosphate as a coprecipitant has been applied to separation of lead from iron matrix. Lead ranging from 0.035 to 1.0 μg could be coprecipitated quantitatively with yttrium phosphate at pH 3.0 from 100 mL of approximately 1 mol/L nitric acid solution containing up to 500 mg of iron and 3.0 g of ascorbic acid as a reducing agent; the recovery of iron could be suppressed at less than 0.1%. The collected lead could be determined by electrothermal atomic absorption spectrometry without any interference of yttrium and phosphate after dissolution of the precipitate. In the proposed method, the limits of detection (3σ) and quantification (10σ), which were calculated based on the values obtained from the eight replicate determinations of the blank, were 0.010 μg and 0.035 μg, respectively. The proposed method was applicable to the determination of lead in certified reference material (JSS 591-1) and commercially available iron powder.

Key words: electrothermal atomic absorption spectrometry; iron and steel; determination of lead; coprecipitation with yttrium phosphate.

1. 緒言

電気加熱原子吸光分析は、鉛を含む各種微量元素の定量に広く利用される方法の一つである3-3。しかし、本法を
鉄鋼試料に含まれる微量不純物元素の定量に適用する場
合、鉄マトリックスの影響により定量値の正確さ、精度の
低下が懸念されるため、定量を目的とする微量元素を鉄マ
トリックスから分離するための前処理がしばしば併用され
る4-9。様々な分離法が提出されているが8-9中でもメチル-
カルベンタノールを用いる液液抽出法4-9は優れた鉄マ
トリックス除去法であり、本法を電気加熱原子吸光分析に
よる鉛の定量に適用することにより検出限界値や定量下限
値が大幅に改善される4-9。しかし、近年は環境管理等の
観点から有機溶媒使用量の削減が要求されている。このよ
うな背景を受けイオン交換法や固相抽出法による鉄マトリ
ックス分離法の開発が盛んになっている。中でもシュウ
酸-硝酸系陽イオン交換法10-11や界面活性剤被覆樹脂を用い
る固相抽出法11-12は有機溶媒のみならず有害な試験液使用
せず、有用な方法として注目されている。一方、共沈法は、
古くから微量元素の分離に利用されている方法であり、鉄
鋼試料に含まれる微量元素不純物元素の定量においても水酸化
ベリリウム共沈法12-13、パラジウム共沈法14-15等が適用されて
いる。共沈法においては、鉛に目的微量元素を捕集す
るため、その定量には共沈の分離反応が必死であり、この
操作が若干煩雑である。しかし、沈殿、即ち共沈剤の選択
によっては有機溶媒や有害な試験液を使用せず、また分離、
定量後の発生する廃液の処理も比較的容易である。著者ら
はこれら共沈法の特徴に注目し、これまで無機沈殿、特に
金属リン酸塩を用いる共沈法による微量元素の分離につい
て研究を進めてきている12-17。一連の研究の中で、リン酸
ラッターが鉄(II)及び鉛を低いpH範囲で定量的に捕集す
る一方、鉄(II)の回収率がpH 3以下では極めて低いことを
見だし、これを利用することにより鉄鋼溶液から鉛を分
離できることをすでに報告した12-17。しかし、本法におい
ては生成する沈殿がやや微細であり、ろ過操作が煩雑とな
る欠点を有していた。

本研究において、リン酸ラッターに比べ沈殿分離が容易
であり、優れた捕集能を有する共沈剤リン酸イットリウ
ム16-17を用い、鉄(III)及び鉛(II)の共沈について検討した
ところ、リン酸ラッターとほぼ同様の挙動を示すことを見
いだした。本論文では、これを利用した鉄マトリックスか
らの鉛の分離条件について検討した結果を述べる。また、
共沈剤であるリン酸イットリウムの存在が電気加熱原子吸光
分析による鉛定量に顕著な影響を及ぼさないことを認めて
たので、本共沈法を電気加熱原子吸光分析に適用し、鉄鋼
試料中の微量鉛定量への適用性について検討した結果につ
いても併せて述べる。

平成18年5月30日受付 平成18年7月3日受理 (Received on May 30, 2006; Accepted on July 3, 2006)
* 富山大学大学院理工学研究科（Graduate School of Science and Engineering for Research, University of Toyama, 3190 Gunfu, Toyama 930-8555)
2. 実験

2.1 装置
原子吸光分析装置は日立製作所製180-80型微光光度計を、光源として同社製中空陰極ランプを
装着して使用した。鉛の測定には同社製バイロコフィン
ゲ黒鉛管を、鉛の測定には標準パーナーを使用した。
Table 1に鉛の測定条件を示す。担当化学であるイットリウ
ムはPerkin Elmer製Optima 3000XL誘導結合プラズマ(ICP)
発光分析装置を用いて測定した。pHの測定には堀場製作
所製F-22型pHメーターを使用した。

2.2 試薬
水は、蒸留水を日本ミリポア製Mill-Q Laboにより
精製したものを使用した。鉄、水およびイットリウム標準液
は全て関東化学製化学分析用標準原液(1000 mg/L)を用
い、使用前にこの原液を水で希釈して使用した。イットリ
ウム溶液(10 g/L)はカライテス製溶媒酸化イットリウム
(99.99%)を塩酸50 mLに加温溶解し、水で1 Lに希釈し
て調製した。リン酸溶液(0.5 mol/L)は和光純素工業製特級
リン酸を水で希釈して調製した。アノミア水及び硝酸は
関東化学製有機金属測定用のものを、その他の試薬は関東
化学製あるいは和光純素工業製特級品を使用した。

2.3 実験操作
鉄として500 mg以下を含む試料をビーカーに取り、
1 mol/L硝酸を加え、必要に応じてホットプレート上で加
温しながら溶解した後、1 mol/L硝酸を加えて約100 mL
の試料溶液を調製した。この溶液にアスコルビン酸3.0 gを
添加し、溶解させた。イットリウム溶液1 mL、0.5 mol/L
リン酸3 mLを加えた後、約6 mol/Lアノミア水を用いて
溶液のpHを約3.0に調整した。約30分間放置して生成し
た沈殿を沈過ごした後、メンブレンフィルター（日本ミリ
ポア製オムノアムプレン、直径25 mm、孔径1.0 μm）を
用いる吸引管により沈殿を分離回収した。その沈殿を
水10 mLで洗浄した後、約4 mol/L硝酸2 mLにて溶解し、
水で10 mLとして測定溶液とした。この溶液中の鉄を電気
加熱原子吸光分析により定量した。なお、必要に応じてこ
の溶液中の鉄をフレーム原子吸光分析にて、イットリウム
をICP発光分析にて定量した。

3. 結果と考察
3.1 鉄マトリックスからの鉄の共沈分離
3.1.1 鉄共沈の抑制
リン酸イットリウムによる鉄の共沈挙動について検討し
た。Fig. 1に20 μgの鉄(III)及び鉄(II)の共沈に及ぶるpHの
影響を示す。鉄(III)は広いpH範囲でリン酸イットリウム
にほぼ定量的に捕集される。一方、鉄(II)の回収率は、
pH 5.5付近以上ではほぼ100%であったが、それ以下では
pHの低下とともに減少し、pH 3.0以下では10%以下
であった。この挙動は、リン酸イットリウムによる鉄の共沈
挙動とほぼ同様であった。これらの結果から、リン酸
イットリウム共沈法においても鉄を含む溶液に適当な還元
剤を添加することにより鉄共沈率を抑制可能であると考え
られる。
そこで種々の還元剤を添加し、その鉄共沈抑制効果につ
いて検討したところ、アスコルビン酸の添加が最も有効で
あることを認めた。Fig. 1には、20 μgの鉄(III)を含む溶液
100 mLにアスコルビン酸0.3 gを添加した後、各種pHで共
沈した場合の結果を示して示しているが、鉄の回収率は鉄
(II)を含む溶液を用いた場合のそれとはほぼ一致していた。
次いで溶液中の鉄に対するアスコルビン酸の必要量につ
いて、鉄(III)を含む溶液100 mLを用いて検討した。鉄(III)
量が100 mgの場合、鉄回収率はアスコルビン酸添加量の

Table 1. Operating conditions for electrothermal atomic absorption spectrometer.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wavelength</td>
<td>283.3 nm</td>
</tr>
<tr>
<td>Lamp current</td>
<td>7.5 mA</td>
</tr>
<tr>
<td>Slit width</td>
<td>1.3 nm</td>
</tr>
<tr>
<td>Cuvette</td>
<td>Pyro-coated tube type cuvette</td>
</tr>
<tr>
<td>Carrier gas</td>
<td>200 mL/min (Ar)</td>
</tr>
<tr>
<td>Injection volume</td>
<td>10 μL</td>
</tr>
<tr>
<td>Heating conditions</td>
<td></td>
</tr>
<tr>
<td>Drying</td>
<td>80-120 °C, 30 s (ramp)</td>
</tr>
<tr>
<td>Ashing</td>
<td>600 °C, 30 s (step)</td>
</tr>
<tr>
<td>Atomizing</td>
<td>2700 °C, 7 s (step)</td>
</tr>
<tr>
<td>Cleaning</td>
<td>2800 °C, 3 s (step)</td>
</tr>
</tbody>
</table>

Fig. 1. Effect of pH on the recoveries of Fe(III) and Fe(II).
Fig. 2. Effect of added amount of ascorbic acid on the suppression of coprecipitation of Fe.

Table 2. Effect of pH on the recoveries of Pb, Fe, and Y.

<table>
<thead>
<tr>
<th>pH</th>
<th>Recovery / %</th>
</tr>
</thead>
<tbody>
<tr>
<td>pH 2.5</td>
<td>Pb Fe Y</td>
</tr>
<tr>
<td>100</td>
<td>103.3 0.07 80.5 91.8 0.06 97.5</td>
</tr>
<tr>
<td>500</td>
<td>104.8 0.03 89.0 106.1 0.02 99.1</td>
</tr>
</tbody>
</table>

Fe(NO)₃·9H₂O was added. Pb, 0.10 µg, Y was measured by ICP-AES.

Fig. 3. Effect of washing volume on the recoveries of Pb and Fe.

增加とともに減少し、0.3g以上の添加によりほぼ一定となった。鉄(III)量が500mgの場合、回収率が一定となるためには3g以上の添加が必要であった。溶液中の鉄(III)量と添加したアスコルビン酸の物質量比と、鉄の回収率との関係をFig. 2に示すが、鉄共沈の効果的な抑制には、溶液中鉄量に対し少なくとも物質量として約2倍量のアスコルビン酸の添加が必要であると考えられる。本法においては、試料溶液に含まれる鉄量を500mg以下とした。アスコルビン酸3.0gを添加することにした。

3.1.2 鉛の共沈条件

pH 3.0以下において鉛の共沈を抑制できたため、鉄(III) 100mgあるいは500mgと鉛とともに溶液にアスコルビン酸3.0gを添加し、pH 2.5及3.0で沈殿を生成させ、鉛、鉄及び鉱物成分であるイットリウムの回収率について検討した。結果をTable 2に示す。いずれのpHにおいても鉛及び鉄の回収率はそれぞれ90%以上及び0.1%以下を示し、これらを分離可能であった。一方、イットリウムの回収率は、pH 2.5では低い回収率を示す場合もあったが、pH 3.0ではほぼ定量的に回収可能であった。なお、生成した沈殿の凝聚性はリン酸ラントンに比べてやや良好であり、沈殿分離のための吸引ろ過に孔径1.0μmのメンプレンフィルターを使用可能であった。これにより、沈殿のろ過に要する時間は、孔径0.2μmのフィルターを使用するリン酸ラントンの場合比べ、最大半分程度である約30分間まで短縮可能であった。これらの結果から、本法ではpH 3.0付近で沈殿生成させ、鉛を共沈分離することにした。

鉛の定量的な共沈捕集に必要なイットリウム量及びリン酸は、それぞれ0.1mg以上及び0.5mol/L溶液として0.2ml以上であった。イットリウム量において、1~3mgの添加では沈殿生成に若干時間を要し、また10mg以上の添加では生成沈殿量の増加により、より長い処理時間を要した。またリン酸量において、添加量が少ない場合、pH調整が若干難しかった。なお、イットリウム量、リン酸量のいずれにおいても添加量の増加により鉛回収量が微増する傾向にあった。これらの結果と、経済性を考慮して、本法ではイットリウム5mg、0.5mol/Lリン酸3.0mlを添加することにした。

ろ過によりメンプレンフィルター上に捕集された沈殿はわずかながら母液を含んでいるため、このまま沈殿を溶解した場合、母液に含まれる鉛もわずかに測定溶液に移行し、結果として比較的高い鉛の回収率を示した。そこで従来の沈殿の洗浄に鉛及び鉄の吸光度の変化について検討した。水で洗浄した場合の結果をFig. 3に示す。鉛の吸光度は、汎濁液量の増加にともない減少し、7ml以上の定数であった。鉛の吸光度は、6ml以上で洗浄することによりほぼ一定の値を示した。以上の結果から、本法では沈殿を10ml程度の水で洗浄することにした。

洗浄後の沈殿の溶解には、電気加熱原子吸光分析に供することを考慮して、硝酸を用いることにした。メンプレンフィルター上に捕集し、洗浄した沈殿は、1mol/L以上の硝酸に溶解可能であったが、溶解の迅速性と、測定溶液中的酸濃度等を考慮し、本法では4mol/L硝酸2mlを沈殿の溶解に用いることにした。

3.2 電気加熱原子吸光分析の測定条件

鉛定量のための黒鉻盤の加熱条件について検討した。灰化温度において、鉛の吸光度は、500~600℃の範囲でほぼ一定となり、それ以上では徐々に減少した。原子化温度に
Table 3. Recoveries of Pb and Fe from some spiked samples.

<table>
<thead>
<tr>
<th>Salt</th>
<th>Fe / mg</th>
<th>Pb / %</th>
<th>Fe / %</th>
</tr>
</thead>
<tbody>
<tr>
<td>FeSO₄·7H₂O</td>
<td>50</td>
<td>105.4 ± 8.0</td>
<td>0.07 ± 0.01</td>
</tr>
<tr>
<td></td>
<td>100</td>
<td>93.5 ± 9.7</td>
<td>0.08 ± 0.001</td>
</tr>
<tr>
<td>Fe(NO₃)₃·9H₂O</td>
<td>50</td>
<td>108.7 ± 4.6</td>
<td>0.05 ± 0.001</td>
</tr>
<tr>
<td></td>
<td>100</td>
<td>91.8 ± 3.7</td>
<td>0.06 ± 0.02</td>
</tr>
<tr>
<td></td>
<td>500</td>
<td>106.1 ± 3.4</td>
<td>0.02 ± 0.001</td>
</tr>
</tbody>
</table>

a: Mean = standard deviation, n=3.

Table 4. Results for determination of Pb in JSS 519-1.

<table>
<thead>
<tr>
<th>Run No.</th>
<th>Pb⁷⁺ / µg</th>
<th>Pb / wt%</th>
<th>Certified value / wt%</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.10 ± 0.001</td>
<td>0.097</td>
<td>0.097</td>
</tr>
<tr>
<td>2</td>
<td>0.48 ± 0.001</td>
<td>0.097</td>
<td></td>
</tr>
</tbody>
</table>

a: Mean = standard deviation, n=5.
JSS 519-1 (1.00g) was dissolved in 500 mL of 1 mol/L HNO₃. (Run No. 1: 5.1 µL/100 mL; Run No. 2: 250 µL/100 mL)

Table 5. Results for determination of Pb in iron powder.

<table>
<thead>
<tr>
<th>Fe Powder</th>
<th>Pb added</th>
<th>Found / µg</th>
<th>Pb⁺⁺ / µg</th>
<th>Pb / µg/g</th>
</tr>
</thead>
<tbody>
<tr>
<td>100</td>
<td>-</td>
<td>0.14 ± 0.001</td>
<td>1.40</td>
<td></td>
</tr>
<tr>
<td>100</td>
<td>0.10</td>
<td>0.24 ± 0.001</td>
<td>2.40</td>
<td></td>
</tr>
</tbody>
</table>

a: Mean = standard deviation, n=5.

3.3 鉄粉試料への適用

本法を鉄粉試料中の鉛の定量に適用するにあたり、1 mol/L硫酸100 mgに鉛を添加して共沈操作を行い、得られた測定溶液を用いて検量線を作成した。鉛として0.035 µgから少なくとも1.0 µgまでの範囲で良好な直線関係が得られた。鉛を添加せずに共沈操作を行い、得られた空試験測定溶液の吸光度測定(n=8)から求めた検出限界(3σ)及び定量下限(10σ)は、それぞれ0.010 µg及び0.035 µgであった。なお、空試験値の平均値は本法の検出限界以下(0.008 µg)であった。

得られた検量線を用い、硫酸鉄(II)及び水和物あるいは硫酸鉄(III)丸水和物を含む1 mol/L硫酸溶液に鉛10 µgを添加し、共沈後、鉛及び鈷の回収率を求めた結果をTable 3に示す。鉛量50~500 mgにおいて、鉛の回収率は91.8~108.7%であった。一方、鈷の回収率はいずれも0.1%以下であった。

これらの結果を踏まえ、日本鉄鋼標準試料JSS-519-1鉛快剝鉬に含まれる鉛の定量を試みた。本標準試料においては鈷含有率が比較的高いため、本法に供する試料溶液は次のように調整した。標準試料100 gを1 mol/L硫酸に加温溶解し、冷却した後、不溶物をろ別し、メスフラスコを用いて1 mol/L硝酸にて500 mLに希釈した。この溶液の51 µL (Run No. 1)あるいは250 µL (Run No. 2)を1 mol/L硝酸100 mLに添加した。これらを用いて定量した結果をTable 4に示す。いずれにおいても確認値とはほぼ一致した値が得られたことから、本法により鉄鋼試料に含まれる鉛を定量することが可能であると考えられる。次いで、試薬メーターおよび市販されている鉄粉 (試薬一級) に含まれる鉛の定量を試みた。ここでは、鉛100 mgをビーカーに取り入れ、1 mol/L硝酸で温浴溶解した後冷却し、1 mol/L硝酸にて約100 mLとした試料溶液に鉛0.10 µgを添加して定量したところ、添加量を反映した定量値が得られたことから、本法では検量線法による定量が可能であると考えられる。

4. 結言

リン酸イットリウム共沈法による電気加熱ジオキシ沈析分離による鉄鋼中の鉛の定量
められた検出限界(3 σ)及び定量下限(10 σ)はそれぞれ0.010 μg及び0.035 μgであった。検量線も鉛量として0.035 μgから少なくとも1.0 μgの範囲で良好な直線となった。本法は日本鉄鋼標準試料JSS-519-1鉛鉄鉬及び市販鉄粉（試薬一級）の分析に応用し、好結果を得た。リン酸イットリウム共沈法と電気加熱原子吸光分析を組み合わせた本法は、定量可能元素が鉛のみであることが難点であるが、その操作は比較的単純であることから、鉄鋼試料中の微量鉛の定量法として有用であると考えられる。

文　献
1) 高橋 務、大道寺英弘：ファーネス原子吸光分析、学会出版センター、東京、(1984).