Tetsu-to-Hagane
Online ISSN : 1883-2954
Print ISSN : 0021-1575
ISSN-L : 0021-1575

This article has now been updated. Please use the final version.

Analysis of Carbon Partitioning at an Early Stage of Proeutectoid Ferrite Transformation in a Low Carbon Mn-Si Steel by High Accuracy FE-EPMA
Takako YamashitaMasato EnomotoYuji TanakaHiroshi MatsudaMasayasu Nagoshi
Author information
JOURNAL OPEN ACCESS Advance online publication

Article ID: TETSU-2017-025

Details
Abstract

Understanding of γ→α transformation during intercritical annealing is important to achieve precise control over the mechanical properties of low-carbon steels. And control of the carbon contents in the phases is the most important factor in alloy design for achieving high strength and high ductility. However, it is unusually difficult to determine the carbon contents in multiphase structures with high accuracy. So, we have developed new methods for suppressing hydrocarbon contamination during field emission (FE) EPMA measurements.

Carbon enrichment at γ/α interface and carbon concentration of γ phase in Fe-0.15%C-2%Si-(1.5, 2.0)%Mn steels isothermally transformed at 750 and 800°C was measured using developed FE-EPMA. The paraequilibrium (PE) model gives much better predictions for carbon enrichment in 1.5%Mn steel for 15 s. The NPLE/PLE transition model of local equilibrium gives much better predictions in 2.0%Mn steel. But the interfacial carbon concentration agrees with the composition of PLE/NPLE transition line in all alloys annealing for 1800 s. Furthermore, carbon enrichment shifted from the PE to NPLE model during annealing.

Content from these authors
© 2017 The Iron and Steel Institute of Japan
feedback
Top