キニ・キトノノガスアリホモツモデロ
名古屋大学工学部
○浅井 満生・工博 鎬 崇

Mathematical Model of Nitrogen Absorption at Tapping from LD Converter
Shigeo ASAI and Dr. Iwao MUCHI

1. 緒 言
鋼材によつては、溶鋼の窒素含有量が重要な問題にな る場合がある。そこで、檻枠から溶鋼を取れへと移る 過程中に酸素ガス吸収にとって、数学モデルをたてて理 論的に解析する。この際、溶鋼中の窒素が吸収へおよぼす影響が著しいことが報告されているので、窒素ガス吸収理論に基づいて解析し、操作条件から溶鋼中の窒素濃度が予測できるようなモデルの展開を試みる。

2. 窒素ガス吸収モデル
溶鋼を平盤から出鋼する際、Fig.1 に示すように、溶 钢が円筒状となって取鋼内に落下し、溶鋼の表面から空 気中の窒素ガス吸収される現象について、單位から出て 取鋼内の窒素ガス吸収のある場合について、単位から出 鋼の取鋼内を各位置での窒素ガス吸収によって解する。

2.1 落下時
溶鋼は、単位内で落下すると、半径方向速度分布はな いとし、取鋼内に落入するまでに単位内で、その表面 と単位との混合はないとする。溶鋼の微小部分を基にして、窒素に関する物質変化を基礎式(1)がえられる。

基礎式: \[(1) (\partial c/\partial t) = (\partial c/\partial r)r + (1/r)(\partial c/\partial r) \] とおける。

初期条件: \(\theta = 0, r > 0 \) で \(c = c_i \) とおき、
境界条件: \(r = R, \theta > 0 \) で \(D(\partial c/\partial r) = k(c^-c) \) とする。

2.2 取鋼内での変化時
取鋼内のガス吸収を基にして、取鋼内での溶鋼層の厚さは、単位層厚が無くても無限の厚さをもつとみなすことができる。溶鋼層内のガス吸収速度を次のように、Higbie の浸透率に基づいて解析する。

基礎式: \[(2) (\partial c/\partial t) = D(\partial c/\partial r)^2 \] とおける。

初期条件: \(t = 0, x > 0 \) で \(c = c_0 \) とおき、
境界条件: \(x = 0, t > 0 \) で \(-D(\partial c/\partial x) = k(c^-c) \) とする。

解: \(c = c^-c_0 \) とおき、

\[\text{解}(x/2D)^{1/2} \text{exp}(kx/D) = k(\sqrt{x/D}) \] となる。

(3) 式を無次元化して \(F \) とおく、

\[c^-c = (4k^2/R^2)^{1/2} \exp(-k^2x^2) \] とおける。

(4) 式で、溶鋼中の窒素ガス吸収速度を基にして次の等式がえられる。

\[\text{解}(x/2D)^{1/2} \text{exp}(kx/D) = k(\sqrt{x/D}) \] とおける。

2.3 取鋼内での変化時
取鋼内のガス吸収を基にして、取鋼内での溶鋼層の厚さは、溶鋼層厚さが無くても無限の厚さをもつとみなすことができる。取鋼内のガス吸収速度を次のように、Higbie の浸透率に基づいて解析する。

基礎式: \[(3) (\partial c/\partial t) = D(\partial c/\partial r)^2 \] とおける。

初期条件: \(t = 0, x > 0 \) で \(c = c_0 \) とおき、
境界条件: \(x = 0, t > 0 \) で \(-D(\partial c/\partial x) = k(c^-c) \) とする。

解: \(c = c^-c_0 \) とおき、

\[\text{解}(x/2D)^{1/2} \text{exp}(kx/D) = k(\sqrt{x/D}) \] とおける。

(5) 式で、取鋼内のガス吸収速度を基にして次の等式がえられる。

\[\text{解}(x/2D)^{1/2} \text{exp}(kx/D) = k(\sqrt{x/D}) \] とおける。

この取鋼内の変化時を基に、取鋼内のガス吸収量を次のように、Higbie の浸透率に基づいて次式がえられる。

基礎式: \[(4) (\partial c/\partial t) = D(\partial c/\partial r)^2 \] とおける。

初期条件: \(t = 0, x > 0 \) で \(c = c_0 \) とおき、
境界条件: \(x = 0, t > 0 \) で \(-D(\partial c/\partial x) = k(c^-c) \) とする。

解: \(c = c^-c_0 \) とおき、

\[\text{解}(x/2D)^{1/2} \text{exp}(kx/D) = k(\sqrt{x/D}) \] とおける。
\(\theta = \theta_1 \) での濃度 \(c_1 \) は
\[
c_1 = c_0 + \frac{\exp(-k\theta_1/\delta)}{\theta_1} \frac{(c^*+c_m)}{\theta_1} \tag{12}
\]
となる。

(b) 底面に広がってから出鋼終了までの過程
この過程では窒素ガス吸収面積は一定であり、窒素に関する物質収支を考えると、\(\theta_1 < T \) では（13）式がえられる。

基準式: \(\frac{dI}{c_0} = AN + \pi R C_{ar} \) …… (13)
初期条件: \(\theta = \theta_1 \) で \(c = c_1 \)
解: \(c = b/a + (c_1-b/a)(\theta/\theta_1)^{-\varepsilon} \) …… (14)
となる。ただし,
\[
a = \left(A - D / \pi R C_{ar} \cdot t_c \cdot k \right) \cdot \frac{\exp(kt_c/D)}{erfc c} \cdot \left(k \sqrt{t_c / D} \right)^{-1} + 2 \left(k \sqrt{t_c / D} \right)^{-1} + 1
b = (a-1)c^*+c_m
\]
なる定数である。また液面平均落下速度: \(U_{av} = \frac{V}{T} \pi R \) と定義する。出鋼終了時の濃度は、\(\theta = T \) とおいて
\(c = b/a + (c_1-b/a)(T/\theta_1)^{-\varepsilon} \) と求められる。これを無次元化して表わすと
\[
\left(c - c^* \right) / \left(c_1 - c^* \right) = \left[1 - \left(T / \theta_1 \right)^{-\varepsilon} \right] \frac{\exp(-k\theta_1/\delta)}{\theta_1} \frac{\exp(-k\theta_1/\delta)}{\theta_1}
\times \left(c / k \theta_1 \right) \cdot a + \left(T / \theta_1 \right)^{-\varepsilon} \cdot \frac{1}{3} \tag{15}
\]
となる。

もしも出鋼の際の \(k \) がえられると、それらの値に対応して（4）、（15）式から液面の窒素の無次元化濃度が求められることになるが、実際には出鋼時の \(k \) を求めた実験がなされていて、従来比較的よく研究されている高周波誘導炉での実験結果を利用した。すなわち、高周波誘導炉で第3元素を添加した場合の窒素ガス吸収速度を非定常ガス吸収理論で取り扱うことにより \(k \) を求めた。

3. 高周波誘導炉における \(k \) と \(t_c \)

高周波誘導炉で窒素についての物質収支をとると（16）式がえられる。

基準式: \(V dC / d\theta = AN \) ………………… (16)
初期条件: \(\theta = 0 \) で \(c = c_0 \)
解: \(\frac{D}{c^*+c_m} \frac{\exp(kt_c/D)}{erfc c} \cdot \left(k \sqrt{t_c / D} \right)^{-1} + 2 \left(k \sqrt{t_c / D} \right)^{-1} + 1 \) と一篇

\[
\left(c^*+c_m \right) / \left(c^*+c_m \right)
\]

Table 1. Estimation of the value of M.

<table>
<thead>
<tr>
<th>Temp. °C</th>
<th>Element</th>
<th>Slope</th>
</tr>
</thead>
<tbody>
<tr>
<td>1600</td>
<td>Si [%]</td>
<td>0.025</td>
</tr>
<tr>
<td>1550</td>
<td>S [%]</td>
<td>0.010</td>
</tr>
<tr>
<td>1600</td>
<td>O [%]</td>
<td>0.036</td>
</tr>
</tbody>
</table>

Temp. °C | Element | Element | Slope |
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1550</td>
<td>O [%]</td>
<td>0.0033</td>
<td></td>
</tr>
<tr>
<td>1650</td>
<td>C [%]</td>
<td>0.045</td>
<td></td>
</tr>
<tr>
<td>1650</td>
<td>Cr [%]</td>
<td>0.044</td>
<td></td>
</tr>
</tbody>
</table>

Fig. 2. Relations of \(k^* \) vs. \(m \) and of \(k \) vs. dimensionless concentrations.

d に次のように求められる。

\[
m = \frac{D}{k_t} \{ \exp(kt/D) \} \left[\frac{k}{D} \right] - 1 + 2k \sqrt{\frac{T}{zD}} \] (18)

誘導炉での実験の際の \(t_0 \) がわかつておれば、第 3 元素添加により変化する \(m \) の値を与え(18)式より \(k \) の値が求まる。このようにして得た \(k \) の値は、第 3 元素添加による影響が含まれていることになる。Fig. 2 の右半の図は、\(m \) 対 \(k \) の関係曲線を \(t_0 \) をパラメータにして示した図であり、左半の図は、(4)式、(15)式の計算例を \(k \) の变化に基づいて図示したものである。実験データから、出鋼時溶鋼中の第 3 元素の影響を加味した \(m \) の値を知り、右半の図で \(t_0 \) を与えて矢印のようにして \(k \) が求められ、左半の図で落下時速度が横軸 (下) から、出鋼終了時速度が横軸 (上) から求められる。

大きな \(m \) の値は大きな吸収速度を意味しているが、Table 1 の中で最大の \(m \) の場合を \(\infty \) であったとみなすと、(18)式より \(t_0 \leq 4Dm/\sqrt{\pi} = 0.021 \) (sec) となる。

なお、\(\delta \) が窒素ガス濃度および水蒸気の影響にて検討した結果、\(\delta = 0.1 - 5 \) cm の範囲では無視できることがわかった。

高周波誘導炉実験解析結果を Table 1 に示す。

4. 結言

溶鋼中に溶け込んだ各元素が窒素ガス吸収におよぼす影響については、従来、吸着または表面吸着の変化などに基づいて論ぜられているが、ここではその影響を物質移動係数 \(k \) に基づいて考慮した。高周波誘導炉で \(k \) を推定する際、非定常ガス吸収理論に基づいて解析し、高周波誘導炉での接触時間 \(t_0 \) を適確に知る点、および \(k \) と第 3 元素との関係を得ることに問題が残されている。

本報の解析は、取扱鋼から鋼型への注入プロセスにも適用できる。

文 献

記 号

\(c_b \) : 取扱 (誘導炉) 内の窒素ガス濃度 [%(wt)/cm³]
\(A \) : 取扱 (誘導炉) の内表面積 [cm²]
\(V \) : 取扱 (誘導炉) 内の溶鋼の容積 [cm³]
\(T \) : 出鋼所要時間 [sec]
\(t \) : 溶鋼とガスの接触時間 [sec]
\(\theta \) : 落下および操作時間 [sec]
\(R \) : 落下中の溶鋼の半径 [cm]
\(c^* \) : 表面窒素ガス濃度 [%(wt)/cm³]
\(c_i \) : 出鋼時炉内窒素ガス濃度 [%(wt)/cm³]
\(k \) : 物質移動係数 [cm/sec]

Fig. 1. Experimental apparatus.