知っておきたい金属凝固の基礎（II）

由司 好喜

Koki Gunji

Introduction to Solidification of Metals（II）

目次

1. 凝固の熱力学
 1・1 純金属の熱力学
 1・2 2元合金の熱力学
 1・3 分配係数

2. 核生成
 2・1 均質核生成
 2・2 不均質核生成
 2・3 温度で変わる核生成過程

3. 固-液界面の構造とその不安定性
 3・1 ファセット成長と非ファセット成長
 3・2 小さな結晶の成長速度

4. 固-液界面の安定性
 4・1 合金の固-液界面に起る組成的過冷
 4・2 合金の組成的過冷とサブ組織の変化
 4・3 固-液界面の安定性のMullins-Sekerkaの解析

5. 単相合金の凝固組織：セル及びデンドライト
 5・1 熱の流れと凝固組織
 5・2 デンドライトの形態と結晶学
 5・3 デンドライトの成長条件
 5・4 デンドライトの安定性基準
 5・5 合金のデンドライト先端の曲率半径
 5・6 デンドライトの大きさ

知っておきたい金属凝固の基礎（IV）

6. 多相合金の凝固
 6・1 共晶合金の凝固
 共晶の形態
 結晶共晶組織の大きさ
 デンドライトと共晶の競争成長
 6・2 包晶合金の凝固
 包晶反応

包晶変態
準安定相相の液体からの晶出
多成分合金の包晶変態

3 固-液界面の構造とその不安定性

液体中に核が生成すると、それが成長を続けると、一般是さらに液体から原子が加えられなくてならない。そして結晶の成長は次のような因子で支配される。

（1）固-液界面への原子の付着速度
（2）曲率効果
（3）熱移動
（4）物質移動
これらの因子は、物質の種類や凝固条件により凝固プロセスにさまざまな影響を与える。

凝固の進行やそれによって生まれる凝固組織などは、熱伝導性のようなマクロ的性質を理解することができる。凝固の過程を原子レベルまで踏み込んで説明することが理想ではあるが、多くの面で十分に正確な解析が可能なおらないようである。ここでは、凝固現象を理解するのに必要な最小限の知識を説明することにする。

3・1 ファセット成長と非ファセット成長

結晶などの面でも同じ速度で成長するだろうか？

誰もが容易に想像するように、成長速度は結晶面によって異なり、結晶成長には大なり小なり異方性が見られる。この異方性の程度は物質によっていちじるしく異なることもあるっている。

図3-1はファセット成長と非ファセット成長した結晶の形態を模式的に示したものである。液体から結晶への原子の移動速度が無視できるほど大きければ、すべての金属が
そうであるように、(a)のようにマクロ的には滑らかな表面をもった非ファセット成長となる。この場合、原子は結晶表面の任意の点からややすく加えられ、結晶の形状は熱や物質の拡散と界面効果によって決まられる。こうした挙動は原子の付着速度が結晶面に無関係であることを示している。しかし、この場合でも全く成長の異方性がないわけではない。界面エネルギーや原子の付着速度のわずかな異方性が原因となってアンドライトの結晶学的な方向性が決まっている。

一方、角ばった面をもつような複雑な結晶構造をもつ非金属、金属間化合物や鉱石等では、(b)のようなファセット成長となる。これは、本質的には粗い高次指数面が液体からやってくる原子を容易に受入れて急激に成長することにより、面が見えなくなったり、結晶はゆっくり成長する低次指数の角ばった面で制限され成長が続けられる。

固体と液体における構造および結合の差が大きいほど、新しく結晶面に到達した原子と結晶の結合が難しくなり、成長には大きな過冷度を必要とするようになる。さらに、高次指数の結晶面は粗成長速度が大きい傾向にあるので、成長速度のいちじるしい異方性は原子的に平らな低次指数の結晶面に関して考慮することになる。すなわち、成長の速い高次指数面は消失し、成長速度の小さい面で制限された特殊な結晶形となる。図3-1にその1例を示す①-①。

この2種類の成長様式は結晶成長の過程によって変わり、液体から非ファセット成長する物質でも蒸気からはファセット成長することもある。工業的な規模の凝固体はファセット相を含む共晶合金Fe-CやAl-Siなどが代表的な例である。

結晶の成長速度は固－液界面における原子の付着と離脱の速度の差に依存する。付着速度は液体中における拡散速度によって変化する一方、離脱速度は原子を界面に結合している最近接原子数によって変化する。そして、最近接原子数は原子の規則性で表面積が、すなわち飽和していない結晶数に依存して変化する。

図3-3(a)に示すように、原子的に平らな固－液界面では、結晶中の原子と液体中の原子との結合が最密であり、液体から拡散してくる原子との結合の確率を減らしてしまう。従って結晶が成長するためには大きな過冷度が必要であり、顕微鏡的にはファセット状結晶に成長する。

一方、図3-3(b)に示すような非ファセット界面は顕微鏡的に平らであるが、原子の規則性では界面は粗く、不均一である。この界面の粗さが、結晶の方向に異なった液体を拡散してくる原子の付着を容易にする原因となっている。このような、非ファセット成長する物質の結晶は過冷度の小さい凝固温度附近で成長することができる。

金属のように非ファセット成長する物質は、液体と固体での構造、密度および結合が類似しているから、相の遷移は緩やかに起り、図3-3(b)のように2相の界面は粗く、散漫な状態となっている。

以上のように、固体と液体における構造や結合の差がファセット成長と非ファセット成長の様式を分ける原因となっていることが分る。そして、この成長様式を決める標準
3.2 小さな結晶の成長速度

結晶成長の異方性についての詳細な解析はK.A. Jackson3-2a,3-3)によって行われているが、計算は次のような方法で進められている。

結晶の成長は結晶表面に到達する原子の速度と表面から離脱する原子の速度の差で決まる。原子の到着速度は結晶格子点の特性に無関係であるが、表面の原子の離脱速度はその最近接原子数に依存する。与えられた最近接原子数をもつ格子点の数は、表面原子の可能な配置および原子の付加と除去によってこの配置がどのように変わるかを統計的に計算して決定した。

(1) 2次元結晶の成長速度

結晶表面のエネルギー構造を、2次元の正方形結晶を例とし図3-4に示す。液体と反復段階(Repeatable Step; 1)原子の付加または除去によって表面エネルギーの変化を示す。正方形結晶では結晶格子数2の場合は、エネルギー差は溶融潜熱とする。Q\text{\textsubscript{f}}は活性化エネルギー、液体中での拡散あるいは粘度の活性化エネルギーと同じである。結晶の表面の格子点のエネルギーは反復段階の格子点よりL/2高く、結晶数3の格子点のエネルギーは反復段階の格子点よりL/2低い。

1秒間に表面に到達する格子点の原子数は次式で表される。

\[V_a = V_0^a \exp \left(-\frac{Q_p}{RT} \right) \] (3-1)

一方、原子が表面を離脱する速度は、表面原子の最近接原子数に依存し、次式で表される。

\[V_t = V_0^t \exp \left(-\frac{Q_p + L}{RT} \right) \] (3-2)

ここで\(\nu \)は表面内部の最近接原子数で、正方形結晶では\(\nu = 4 \)である。

反復段階の格子点(\(n = \nu/2 \))における原子の付着と離脱の速度は溶融温度\(T_m \)において等しくなければならないので、次のようになる。

\[V_0^a \exp \left(-\frac{Q_p}{RT_m} \right) = V_0^t \exp \left(-\frac{Q_p + L}{RT_m} \right) \] (3-3)

\((3-2) \)と(3-3)から次式を得る。

\[V_t = V_0^t \exp \left(-\frac{Q_p}{RT_m} \right) P_n \] (3-4)

ここで

\[P_n = \exp \left(\frac{L}{RT_m} \right) \exp \left(\frac{2nL}{\nu RT_m} \right) \] (3-5)

は、最近接原子数\(n \)をもつ原子が格子点を離脱する確率を表す。

従って実際の成長速度(原子付着速度)は次式で表される。

\[V = V_a - V_t = V_0^a \exp \left(-\frac{Q_p}{RT_m} \right) \left[\sum_{n=1}^{N} N_n P_n \right] \] (3-6)

ここで\(I \)の総和は原子が付着できるすべての格子点。\(j \)の総和は原子がそこから離脱できるすべての格子点。\(P_n \)は\(j \)型の格子点について(3-5)式で表される\(P_n \)の値。\(N \)は界面における格子点の総数を示す。

この基本モデルを用い、2格子点、3格子点および4格子点モデルの(10)面と(11)面の成長速度を計算した。計算は大変に長らく、複雑になるが、2、3の過冷度について数値計算した結果、成長速度は第一義的に過冷度に比例し、結晶は級数温度では平衡していることが明らかになった。

過冷度\(\Delta T \)が小さい \((\Delta T)/(RT_m T) \ll 1 \)の場合には、

\[P_n = \exp \left(-\frac{\Delta T}{RT_m T} \right) \approx 1 - \frac{\Delta T}{RT_m T} \]

ので、(3-6)式は次式のように簡略化できることを示した。

<table>
<thead>
<tr>
<th>無次元エネルギー ((\Delta S_i/R))</th>
<th>物質</th>
<th>溶解形態</th>
<th>成長形態</th>
</tr>
</thead>
<tbody>
<tr>
<td>~ 1</td>
<td>金属</td>
<td>融体</td>
<td>NF</td>
</tr>
<tr>
<td>~ 1</td>
<td>"プラストチック"結晶</td>
<td>融体</td>
<td>NF</td>
</tr>
<tr>
<td>2-3</td>
<td>半導体</td>
<td>溶液</td>
<td>NF/F</td>
</tr>
<tr>
<td>2-3</td>
<td>半金属</td>
<td>溶液</td>
<td>NF/F</td>
</tr>
<tr>
<td>~ 6</td>
<td>分子結晶</td>
<td>溶液</td>
<td>F</td>
</tr>
<tr>
<td>~ 10</td>
<td>金属</td>
<td>蒸気</td>
<td>F</td>
</tr>
<tr>
<td>~ 20</td>
<td>混合分子</td>
<td>融体</td>
<td>F</td>
</tr>
<tr>
<td>~ 100</td>
<td>ボリマー</td>
<td>融体</td>
<td>F</td>
</tr>
</tbody>
</table>

\(F \): ファセット成長、\(NF \): 非ファセット成長

\(\Delta S_i \): \(\Delta H_i/T \) (J/molK)、\(R \): 8.31 (J/molK)
表 3-2 単純立方晶の2×2面の成長速度因子

<table>
<thead>
<tr>
<th>ΔS/R</th>
<th>f [100]</th>
<th>f [110]</th>
<th>f [111]</th>
<th>f [111]/f [100]</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.530</td>
<td>0.545</td>
<td>0.505</td>
<td>0.95</td>
</tr>
<tr>
<td>5</td>
<td>0.202</td>
<td>0.354</td>
<td>0.505</td>
<td>2.5</td>
</tr>
<tr>
<td>10</td>
<td>0.010</td>
<td>0.089</td>
<td>0.505</td>
<td>50.5</td>
</tr>
</tbody>
</table>

\[
V = V_0\exp\left(-\frac{Q_f}{RT}\right) \frac{\Delta T}{R T_m} f (hk) \\
= V_0\exp\left(-\frac{Q_f}{RT}\right) \cdot \frac{\Delta T}{T} f (hk) \quad \text{……… (3-7)}
\]

ここでf (hk)は単一液界面の構造面の接線方向の成長速度を示し、ミラー指数で表される。 （3-7）式は大が小さい場合には、成長速度Vは、ΔTおよびf (hk)にそれぞれ比例することを示している。正方形結晶のすべての場合についてf [100]の関係が計算され、結晶面の相対的による成長速度の異方向性が明らかにされた。

（2）単純立方晶の成長速度

2次元結晶と同様に、3次元結晶の成長速度を解析した。単純立方晶では6個の最近接原子があり、反復段階の様子は3個の最近接原子を有している。これらの成長する時にPfの値は単純立方晶に対して（3-5）式により、成長速度は（3-6）式によって計算した。

単純立方晶の(100), (110)および(111)面における表面の可能な配置は、それぞれ8, 9および7個である。これらを計算し、各面の成長速度を決定した。過冷却の小さい（ΔT/RT_m）＜ 1の場合では成長速度は過冷却ΔTに比例した。αが1, 5および10における成長速度因子f (hkl)の関係を表3-2に示した。

表から、溶融エントロピーが高くなるとf [111]/f [100]が増加し、高次指数面の成長速度がいちじるしく増加するので、αの大きい物質は(100)面によって制限されることが明らかである。

実際の凝固現象では、ファセット成長する錆鉄中の黒鉄が微量元素の濃度調節により、(001)面と(101)面の面成長速度が変化し、析出する黒鉄の形状が変化する現象はよく知られている。

\section{4 固一液界面の安定性}

物質は気体→液体→固体あるいは気体→固体といった順序で自由エネルギーを失いながら変態し、安定な固体を生成する。こうして生成した自然界の固体は原子が規則的に配列した結晶という状態になる。それらは岩石、鉱物であり、氷および雪でもある。また自然の水が自然の結晶から取り出された金属も同じように無晶質の姿をしている。

大変変化することにより、これらの固体はそれぞれ全く異なった形状や容積を示しており、結晶構造が同じでないことを証明している。雪の結晶を詳細に観察してみると、その形状は千変万化し、その時の気象条件によって形の異なる多くの結晶が生まれてくる。あらゆる固体の生成は雪の結晶の生成に類似しているはずであり、いわゆるスケール単位を調節すれば同一の機構で説明できるのは当然である。

人類が創り出した金属はどんな姿をしているだろうか？

マクロ的には強固でしなやかな性質をもった固体であるが、その内部の構造は大変複雑であることが明らかになってきた。凝固したままの金属結晶の中を少し高い倍率の顕微鏡で観てみると、多くの場合結晶粒の中にデンドライトと呼ばれる枝状のサブ組織が見られる。これは金属が凝固する時は平滑な固一液界面（以後なるべく界面と記す）が平らなまま前進して固化するのではなく、複雑な界面形状で凝固することを示唆している。こうした金属の凝固組織の形成について長い間研究されてきたが、Chalmersら(1)の組成の過冷理論に始まり、 Mullinsと Sekerka(2)の振動法を用いた界面安定性理論の誕生で解明の手がかりが得られたと言えよう。

\section{4.1 合金の固一液界面に起因する割れの進化}

\subsection{4.1.1 平らな界面における溶質の濃化}

方向が一定した熱流の中で凝固した金属がなぜ単純な固体に残らず、その中にはデンドライトなどの複雑組織が含まれるのだろうか。長時間の結果の質疑に最初の答えを与えてくれたのはChalmersらがである。

この理論は組成の過冷と言われるように合金にのみ適用される考え方である。2元合金の熱力学が教えるように、固体と液体が流動できる条件は溶質の濃度が等しくなることではなく、化学ポテンシャルと呼ばれる溶液の相の相を自由エネルギーが等しくなることを意味する。簡単のために大半の合金の特徴である単純分配系係数をk_m < 1の場合についてのみ考えます。

凝固の進行に伴い、化学ポテンシャルが等しくなるように側から追込まれる溶質は、追込まれる速度（凝固速度）が溶質の液体中にさらされる速度（拡散速度）より大きい場合には、界面に濃化せざるを得なくなる。

前進しつつある界面に無塩が濃化する現象は多くの人によって解析されている。熱流束と反対の方向に界面が前進すると固相と塩とが界面で放出され、液体と固体に拡散して行く。k_m < 1の場合にして境界面には溶質の濃化が起こり、凝固速度を（α）を形成するとともに熱環境層（β）も形成する。例えば凝固速度がV = 0.01mm/sの場合の液体側のこれらの境界面の大きさを比べると、α = 2D/V = 10, β = 2α/V = 0.2. 3.3.3.3となら、通常の凝固ではこれに比べては極めて大きいことが分る。これは、界面における溶質の拡散を熱のそれと分けて解析することができることを示唆している。
濃度Cなる溶質が拡散係数Dで液体中を拡散する時の拡散過程を支配する方程式は次のように表わされる。

\[\frac{\partial C}{\partial t} = \frac{1}{D} \cdot \frac{\partial C}{\partial z} \quad \text{……(4-1)} \]

凝固過程の解析では、この方程式は次元あるいは2次元の方程式に簡略化して用いるべき、円筒座標あるいは球座標のような適当な座標系に変換して利用することもできる。1次元方程式は次のようにとなる。

\[\frac{\partial^2 C}{\partial z^2} = \frac{1}{D} \cdot \frac{\partial C}{\partial t} \quad \text{……(4-2)} \]

この方程式は、いわゆるFick's第2法則である。

凝固の進行に伴って界面は移動するので、上式を解くには移動する境界条件を解する必要が生じてくる。図 4-1 のように、観察者の固定座標（y, z）に関して速度 \(V = -\frac{\partial z}{\partial t} \) で移動する界面の座標（y, z）を定義すると

\(z = Z - Vt \quad \text{……(4-3)} \)

となる。

図 4-1 から、\(\frac{\partial z}{\partial Z} = 1, \frac{\partial C}{\partial Z} = (\frac{\partial C}{\partial z}) (\frac{\partial z}{\partial Z}) = (\frac{\partial C}{\partial z}, \frac{\partial^2 C}{\partial z^2} = \frac{\partial C}{\partial z} \) が得られるので、移動座標においても (4-2) 式の左辺は変わらないことが分る。濃度CはZとtの関数なので、t およびz(t)の関数に変換すると次のようになる。

\[\frac{dC}{dt} = \frac{\partial C}{\partial z} \cdot \frac{dz}{dt} + \frac{\partial C}{\partial t} \quad \text{……(4-4)} \]

(4-2), (4-3) および (4-4) の各式から次式が得られる。

\[D \frac{\partial^2 C}{\partial z^2} = -V \cdot \frac{\partial C}{\partial z} + \frac{\partial C}{\partial t} \quad \text{……(4-5)} \]

ここで凝固—拡散過程が時間が無関係に凝固状態で進行するならば、1次元あるいは2次元の凝固—拡散方程式が次のように導かれる。

\[\frac{\partial^2 C}{\partial z^2} + \frac{\partial C}{\partial t} = 0 \quad \text{……(4-6)} \]

\[\frac{\partial^2 C}{\partial z^2} + \frac{\partial C}{\partial t} = 0 \quad \text{……(4-7)} \]

定常状態の一方向拡散により平らな界面に生ずる溶質のPile Upの式 (4-6) の解は、Chalmersら、Flemingst、Kurz と FisherのPile Upの理論によって詳細に解析されている。その詳細は省略する。

(1) 固体中の拡散は無視する。
(2) 濃度は拡散によってのみ変動する。
(3) 凝固中k_a は一定である。

固定とした時の完全解は次式のようになる。

\[C = C_0 \left[1 - \left(\frac{1-k_a}{k_a} \right) \exp \left(-\frac{V}{D} \right) \right] \quad \text{……(4-8)} \]

ここでC_a は初期濃度であり、図 4-2 に示すように拡散のみで溶質が液体に分散する時には界面から無限遠方における濃度でもある。

ここで、現実の濃度境界層として等価境界層を定義する。等価境界層は無限境界層と同じ全溶質濃度を含むように選ばれ、tを横切って一定の濃度勾配をもつように決める。

従って、図 4-2 において3 角形 OMNの面積をハッチングされた無限層の面積に等しくなる。

\[\frac{\partial C}{\partial t} = \frac{2D}{V} \quad \text{……(4-9)} \]

4-1・1・2 液体に対流がある場合の溶質の濃化

数値解の解を目的としたので、まず対流のない液体の界面を検討したが、実際の凝固ではこれも少なからぬ液体の対流は避けられない。凝固速度が非常に小さいか液体が激しく攪拌されつつ、平らな界面で凝固が進行する場合には、

(1) 固体中の拡散は無視する。
(2) 液体中の溶質分布が均一である。
(3) 凝固中k_aは一定である。
と仮定すると、固体中の溶質濃度C_sと固相率f_sの関には次式のような関係があり、Scheil式の式と呼ばれている。
\[C_s = k_a C_0 (1 - f_s)^{-k_a} \]
(4 - 10)
この場合は、図4 - 3に示すように界面前方に溶質の濃化は起こらない。この関係は合理性に欠けるように見えるけれど、後述のように拡散距離の小さいシャドーメタルの拡散の解析などには欠かすことのできないモデルとなっている。
一方液体中に流動があっても界面における溶質の濃度勾配を消去できない時には、(4 - 8)式と(4 - 10)式の中間の条件となる。この問題をBurtonらは流動の強さで決まる濃度境界層を導入して解いた。図4 - 4のような濃度分布がある場合には、境界層の範囲内では定常状態(4 - 6)式の関係が成立する。これを解くと次式が得られる。
\[C_l = C_0 \left[1 - \frac{k_a}{k_0} \exp \left(\frac{-V_s}{D} \right) \right] \]
(4 - 11)

4.2 合金の組成的過冷とサブ組織の変化

4.2.1 組成的過冷の発生

これまでの議論で進行している界面と接する液体は、その源か前のパルク液体と異なる組織であることがある。図4 - 5に示すように$k_a < 1$の合金では界面と接する液体の溶質濃度はパルク液体の濃度より高く、従って、界面近の平衡相線温度はパルク液体の平衡相線温度より低くなる。

図4 - 5 合金における組成的過冷

図4 - 5は便宜上対流のない定常状態を仮定しているが、液体の実験的温度分布T_oが点線のようにになっている場合を考えよう。この場合はパルク液体の温度は界面温度より高いので、パルク液体の温度が界面温度より低い温度的過冷とは異なるが、パルク液体の温度T_oは平衡相線温度T_lより低いという意味で界面近くの液体は過冷されている準安定状態にあることになる。こうして生ずる過冷は「組成的過冷」と呼ばれ、パルク液体が界面温度より低い温度的過冷とは発生原因が異なっている。

溶質のPile Upによって生ずる平衡相線温度T_oは純金属の融点T_m、状態図の液相線を境にmとすれば
\[T_l = T_m - m C_0 \]
(4 - 12)
となる。界面の前方の距離zにある点の平衡相線温度T_lは、(4 - 8)と(4 - 12)式より次のようになる。
\[T_l = T_m - m C_0 \left(1 + \frac{k_s}{k_0} \exp \left(-\frac{V_s}{D} \right) \right) \]
(4 - 13)
一方パルク液体の温度T_sはその温度勾配を$G_1 = (dT_s/dz)$で、0とすれば次式で表わされる。
\[T_s = T_m - \frac{m C_0}{k_0} G_1 z \]
(4 - 14)

組成的過冷の発生はT_lとT_oの原点（界面）における温度勾配で決まり、界面における温度勾配の等しい時の組成的過冷発生の臨界値となる。界面における液体中の溶質の濃度勾配をG_cとおくと(4 - 12)式から次式が得られる。
\[\left(\frac{dT_l}{dz} \right)_{z=0} = \left(\frac{dT_o - m C_0}{dz} \right)_{z=0} = m G_c \]
(4 - 15)
また (4 - 13)式と図4 - 5から
\[\left(\frac{dT_l}{dz} \right)_{z=0} = \frac{1 - k_a}{k_0} \frac{V_s}{D} = \frac{\Delta T_s V}{D} = m G_c \]
(4 - 16)
が得られる。従って組成的過冷の臨界値は

N213
- \(\frac{mC_0}{k_0} \frac{1}{D} = mG_c - G_1 \)
(4.17)

となる。組成の過冷は

\(mG_c > G_1 \)
(4.18)

で発生するが、上式から同一合金では凝固速度および溶速濃度の高いほど、またパルク液体の温度勾配の小さいほど組成の過冷の発生し易いことが分る。

表4-1はFe-C合金について凝固速度と凝固面の温度勾配の関係を計算したもののであるが、界面の乱れを防ぎセルやデンライト組織の形成を阻止するにはパルク液体の大きな温度勾配の必要性が理解される。

4.2.2 組成の過冷によってサブ組織はどう変わるか

RutterとChalmers等は平らな界面前方に組成の過冷領域が発生し、界面に小さな突起ができてると主界面より大きな過冷領域に入る所で突起はますます大きくなり、平らな界面が乱れセル組織が形成されると提案した。Bilonisらは平らな界面に接する液体中に過冷が生じると、成長している棒状の転位の周りにくぼみを形成し、さらに過冷が増すとそれらのくぼみが連なって図4-6に示すように規則正しい六角セルになると考えた。

組成の過冷の発生とセル状組織の形成については融点合金を用い古くから研究されてきた。例えば、図4-7はSn-Pb合金のセル状組織形成と（4.17）式の臨界条件の関係を示したもので、実証で得られた\(G_1/V \)の臨界値と合金の物性値および（4.17）式から求めた計算値とが非常によく一致することが分る。

組成の過冷の発生したセルの先端に接する液体の組成の過冷がさらに増加すると、図4-6の各セルの側面からくぼみに向って突起が現れ、デンライト組織が形成される。セル組織からデンライト組織に変わる臨界値については2、3の研究が行われ、\(G_1/V \)をパラメータとして検討され

写真4-1 25Cr-20Ni鋼の凝固条件とサブ組織の関係（×20）
(a)；平らな界面で凝固したと思われる結晶粒、\(G_1 = 26 \degree C/cm, V = 0.0065 cm/min, \)
(b)；セル状組織、\(G_1 = 45 \degree C/cm, V = 0.022 cm/min, \)
(c)；セル状組織、\(G_1 = 49 \degree C/cm, V = 0.011 cm/min, \)
(d)；デンライト組織、\(G_1 = 54 \degree C/cm, V = 0.033 cm/min, \)
(e)；デンライト組織、\(G_1 = 48 \degree C/cm, V = 0.012 cm/min, \)
(f)；デンライト組織、\(G_1 = 44 \degree C/cm, V = 0.084 cm/min, \)

しているがその物理的意味は明らかにされていない。

鈴木らは25Cr-20Ni鋼の凝固組織と凝固条件の関係を詳細に研究し、写真4-1および図4-8のような関係を得た。図4-8から\(G_1/V \)の値により凝固組織が明確に識別でき、組成の過冷が組織形成の原因になっていることが明らかにされた。
4・3 固-液界面の安定性のMullins-Sekerkaの解析
4-3-1 はじめに
Chalmersらによって提案された組成過冷理論によって
晶成長の理論的解析の要因を導入することができ,1950
年代から1960年代にかけてすばらしい展開を見せた。
しかし,その後の研究から組成過冷理論には次のような
欠点があることが分った。
（1）界面エネルギーの影響を考慮されていないので,平
らな界面に凹凸が生じた時の過冷量の変化を説明が
できない。
（2）液体の温度勾配のみで固体の温度勾配を考慮してい
ない。
（3）組成過冷の理論では,界面が不安定になって発達
する界面の大きさについて何の情報も与えることができ
ない。
界面はもともと完全に平らなものではなく,無限に小さ
い凹凸のある曲った面であり,その凹凸の大きさが温度や
溶質濃度の変化によって変動すると想定して界面を解析す
る数値がMullinsとSekerka（場合によりM-Sと略記す
る）によって提案された。小さなパラメータを含む微分
方程式の解を関数のべき級数に展開する近似解法を数値法と
呼んでいる。
MullinsとSekerkaの解析後, SekerkaとDelevesによって数値的に完全に解かれたが本質的に同じ結果が得
られた。MullinsとSekerkaの解析が多い近似的であると言
えても厳密な解を得るにはFourier級数やLaplace変換の
知識が必要とする。こうした煩わしさを避けるためにさらに
簡略化された近似解がKobayashi（1907）,KurzとFisher（1963）
によって試みられている。ここではMullinsとSekerkaの模
倣の概要を理解することを主目的とし,最も簡単なKurz
とFisherの解き方に従って説明してゆく。
図4-9に示すように平らな界面に与えた微小変位を振幅
e,波数ω（=2π/λ）の正弦波として想定する。

\[z = e \sin \left(\omega y \right) \]

ここでVは界面の変動速度, D, aおよびaはそれぞれ溶質
の拡散係数, 液体および固体の熱拡散係数を示す。
これらの基底式を数値的に境界条件によって達成して解く
必要があり,研究者をそれぞれこれを行っているが,その
複雑な解き方を説明することは至ってこの理論の理解を難
解にするように思われる。KurzとFisherはこの理論を理解し
易くするため大胆な仮定により,分かり易い近似解を古い
テキスト（69）で試みているので,以下にそれを説明する。
まず,温度場は直線的で温度勾配格は界面の形状に影響さ
れないと仮定し,定常状態の仮定と仮定すれば界面前方の液
相中の温度場は乱れた界面における濃度場を解けばよいと
した。
4・3・2 わずかに乱れた界面前方の濃度分布
まず少しき乱れた界面前方の濃度分布を計算する。定常状
態における平らな界面の濃度分布の正確な解は（4-8）式

\[z = e \sin \left(\omega y \right) \]

図4-9 固-液界面における界面の乱れ

N215
で表わされる。

\[C_i = C_0 - \left(\frac{C_0}{k_0} - C_a \right) \exp \left(-\frac{V_z}{D} \right) \] \hspace{1cm} (4 - 8)

揺動法を用い、この平らな界面の濃度分布の正確な解に（4 - 19）式と同じ形の揺動の項を加えると

\[C_i = C_0 + \left(\frac{C_0}{k_0} - C_a \right) \exp \left(-\frac{V_z}{D} \right) + A \sin(\omega y) \exp(-bz) \] \hspace{1cm} (4 - 23)

となる。\(b \)は加えられた項が（4 - 6）式を満足するよう

\[b = \left(\frac{V/2D}{(V/2D)^2 + \omega^2} \right)^{1/2} \]

とされる。\(A \)は境界条件を満足するよう（4 - 23）から求まる数値である。

\[C_i = C_0 + \left(\frac{C_0}{k_0} - C_a \right) \exp \left(-\frac{V_z}{D} \right) + \sin(\omega y) \exp(-bz) \] \hspace{1cm} (4 - 24)

\[V (1 - k_0) \frac{dC_i}{dz} = -D \frac{dC_i}{dz} \] \hspace{1cm} (4 - 25)

ここで\(C_i \)は界面の濃度を示す。界面から無限遠方\(z = \infty \)では

\[C_i = C_0 \] \hspace{1cm} \(C_i \)に対して\(z \)に対して\(\sin(\omega y) \)を代入すると次式が得られる。

\[C_i = C_0 + \left(\frac{C_0}{k_0} - C_a \right) \exp \left(-\frac{V_z}{D} \right) - \sin(\omega y) \exp(-bz) \] \hspace{1cm} (4 - 26)

この式は\(\sin(\omega y) \)の\(\omega \)と\(\omega \)は小さい場合は\(\exp(-x) = 1 - x, \)

\[\epsilon^2 \text{および} \delta^2 \text{を含む項は無視されるので} \]

\[C_i = C_0 + \left(\frac{C_0}{k_0} - C_a \right) \exp \left(-\frac{V_z}{D} \right) + \sin(\omega y) \exp(-bz) \] \hspace{1cm} (4 - 27)

となる。\((4 - 8) \)式を\(z \)について数値分し、\(z = 0 \)とすれば界面における液体の密度勾配\(G_c \)が次のように得られる。

\[G_c = -V \left(\frac{C_0}{k_0} - C_a \right) \] \hspace{1cm} (4 - 28)

これを\((4 - 27) \)式に代入し、\(S^2 \)を含む項を消去すると

\[C_i = C_0 + G_c S + AS \] \hspace{1cm} (4 - 29)

が得られる。次に（4 - 23）式を\(z \)について数値分し、界面における値に（4 - 28）式を代入すると次式が得られる。

\[\frac{dC_i}{dz} = s = G_c \left(\frac{1}{1 - \delta^2} \right) + bAS \] \hspace{1cm} (4 - 30)

\[(4 - 28) \text{式と} (4 - 29) \text{式を} (4 - 25) \text{式に代入し、} S \text{を消去すると} \]

\[A = \frac{k_0 V G_c}{V_p D b} \] \hspace{1cm} (4 - 31)

が得られる。ここで\(p = 1 - k_0 \)。このAの値を（4 - 23）式に代入すると、わずかに乱れた界面前方における溶質分布を表わす次式が得られる。

\[C_i = C_0 + \left(\frac{C_0}{k_0} - C_a \right) \exp \left(-\frac{V_z}{D} \right) + \exp \left(-\frac{V_z}{D} \right) \exp \left(- \frac{k_0 V G_c \sin(\omega y)}{V_p D b} \right) \] \hspace{1cm} (4 - 32)

4・3・3 界面における温度と濃度のカップリング

わずかに乱れた界面前方の溶質の分布は（4 - 32）式で求められるが、次にこの濃度分布に見合った平衡液相線と実際の温度とのカップリング条件を求める。

\[T^* = T_m + mC_i - k_T \] \hspace{1cm} (4 - 34)

次の式で表わされる。

\[K^* = \frac{z^*}{(1 + z^*)^2} \] \hspace{1cm} (4 - 33)

ここで\(z^* \)はそれぞれ\(z = \sin(\omega y) \)の1次および2次の導関数である。\(y \)が非常に小さい時は次のようになる。

\[K^* = \frac{d^2 \sin(\omega y) / dy^2}{1 + (d \sin(\omega y) / dy)^2} \] \hspace{1cm} (4 - 35)

\[= \omega^2 \sin(\omega y) \] \hspace{1cm} (4 - 35)

これを（4 - 34）式に代入すると\(T^* \)は次のようになる。

\[T^* = T_m + mC_i - k_T \sin(\omega y) \] \hspace{1cm} (4 - 35)

一方液体の状態を熱流束による温度変化に考慮する界面の温度分布\(T_i \)は次のようになる。

\[T_i = T_m + mC_i + G_z \] \hspace{1cm} (4 - 36)

ここで\(T_o \)（= \(T_m + mC_i / k_0 \)）は定常状態での平らな界面の

\[(4 - 37) \text{式と} (4 - 38) \text{式が等しくなければならないので} \]

\[mC_i - k_T \sin(\omega y) \] \hspace{1cm} (4 - 38)

が成立する。\((4 - 29) \)式の\(C_i \)と（4 - 31）式のAを（4 - 38）式に代入すると

\[mG_c = G_i + \frac{mk_0 V G_c}{V_p D b} - \omega^2 T = 0 \] \hspace{1cm} (4 - 39)

\[\sigma \text{は専門的な注} \] \hspace{1cm} (4 - 39)

N216
となる。ここでk_oが非常に小さいとし$k_o \approx 0$を代入して整
理すると次式が得られる。

$$-\omega^2(b-Vp/D)G_1(b-Vp/D)+mg_c(b-V/D)=0 \quad \cdots (4-40)$$

さて、簡単な解析で導かれたこの（4-40）式は、完全
な手順で導かれたMullinsとSekerkaの主要な結果である次
式の中の（）内の表現と同じであることが分かる。

$$\frac{\hat{\varepsilon}}{\varepsilon} = \frac{V_0-2T_0\varepsilon^2}{\varepsilon} \left[(g-g') (b-V/D)p + 2\omega m g_c \right] \quad \cdots (4-41)$$

ここで$\hat{\varepsilon} = \varepsilon/dt$, $\Gamma = \sigma/L$, $g = (x_0/\varepsilon) G_1$, $g' = (x_0/\varepsilon)$

G_1, $\Gamma = (x_0+\varepsilon)/2$, εおよびx_0はそれぞれ液滴と固体の熱
伝導度を示す。 （4-40）式にはεの時間導関数$\hat{\varepsilon}$が含まれて
いない。そこで液滴と固体の温度勾配が等しく、熱流の影
響を無視すると仮定し、これを（4-41）式に適用すると、

$g = 2G_1$, $g' = 0$ となる。さらにMullinsとSekerka(37)は

$\Gamma = \sqrt{2}/L$, KurgとFisher(38)は$\Gamma = \sqrt{1/2}$

と定義しているので、これらを（4-41）式に代入すると次式が得
られる。

$$\frac{\hat{\varepsilon}}{\varepsilon} = \frac{V}{mg_c} \left[(1-\omega^2(b-Vp/D)G_1(b-Vp/D)
+ mg_c(b-V/D) \right] \quad \cdots (4-42)$$

4-3-4 界面の安定性の解析

Al-Cu合金を例にとると、（4-42）式の$\hat{\varepsilon}/\varepsilon$と$\lambda$との関係を
図4-10に示した。パラメータ$\hat{\varepsilon}/\varepsilon$は小さな振動の振幅の相対
的な発達速度を示し、最大値のある関数となる。波長が非
常に短い場合には曲線の減少によって$\hat{\varepsilon}/\varepsilon$は負の場合となり
乱れは消失する傾向になる。λ以上の波長では乱れが強調さ
われ、最終の振幅の発達速度では乱れが支配的になる。さら
にλが増加すると界面が安定化する傾向になるのは、大きな
距離にわたっての溶質の拡散が困難になるためである。界
面が完全に安定な場合には、この曲線は$\hat{\varepsilon}/\varepsilon = 0$の直線の
下に位置することになる。

図4-10 速度で示した界面における乱れの発達
速度：Al-2%Cu(V= 0.1 mm/s, G_1=10K/mm)

4-3-5 少し近似法の高い界面の安定性の解析

M-S解析の解から、液体と固体の熱伝導度の差および溶
融相変熱の影響を無視して導かれた（4-42）式に戻ることに
するが、ここで$F = (\hat{\varepsilon}/\varepsilon) (m g_c/V)$とおくと次のようになる。

$$F = \frac{\hat{\varepsilon}}{\varepsilon} = \frac{V}{mg_c} \left[(1-\omega^2(b-Vp/D)G_1(b-Vp/D)-mg_c(b-V/D) \right] \quad \cdots (4-46)$$

図4-10からも分かるように$\hat{\varepsilon}/\varepsilon > 0$の場合には界面の乱れ
は増加し、$\hat{\varepsilon}/\varepsilon < 0$では界面は安定する。同様に（4-46）式
のωの任意の値に対して$F > 0$であれば界面の乱れが増大し、
$F < 0$であれば界面は安定になることが分る。そこで、界面
の安定・不安定判定を決める各パラメータ間の求解し
易な関係を検討することにする。

図4-11は（4-40）式からFとωなどのパラメータとの関
係を示したものであるが、仮定の多い図4-10とは異なって
いる。図4-10では不安定領域がλとωで制限されているのに
対し、M-S解に少し近い図4-11では不安定領域がλとωで
制限されている。

（4-46）式からFと含まれているパラメータの関係を定
性的に知ることはできる。曲率効果ω^2/bと溶液の温度勾配G_c，
図 4-11 組成過冷した固一液界面における乱れの発達速度

はFの値を減少させて界面の安定性を増加するが、mG_eは常に正の値なので界面は不安定にさせる。しかし、bはωの関数であるため、(4-46) 式は複数のωの関数となり、そのままFを計算するには大変な困難の伴うことが分る。

図 4-11から安定性の基準を導き出すためには (4-46) 式が正のωに対して根をもつかどうかを知る必要がある。もし根がなければ曲線は正のωに対してF = 0 の直線の上に行かないのでも何で負の値となり、界面は安定となる。

ここで (4-46) 式の根を求ることはあまり簡単ではないので、KurzとFisherは根を求める代わりに次のような巧妙な方法を試みている。Descartesの定理は任意の代数式においては、正の根の数は式の係数の符号の変化の数を超えることはないと教っている。この定理を (4-46) 式に適用して根の有無を知るために、(4-46) 式を次のように変形する。

\[F = -\Gamma b^2 + \frac{V_T}{D} (1+p)b^2 + (p \Gamma V^2 - m G_e - G_l) b + (\frac{m G_e V}{D} - G_l V_p) \]

さらに b = W + (V/D) を代入すると

\[F = -\Gamma w^2 - \frac{V_T}{D} (1 + k_o) W^2 + (m G_e - G_l - \frac{k_o V^2}{D^2}) W^1 - \frac{k_o V}{D} \]

となる。ここでWは図 4-11の横軸を変えるために導入した勝手な変数である。今 (4-48) 式に根が存在するかどうかを問題であり、根がどの位置にあるかどんな値をもつかということは問題にならない。

表 4-2 は(4-48) 式の係数の符号を示したものである。

表 4-2 は(4-48) 式の係数の符号を示したものである。

表 4-2 は(4-48) 式の係数の符号を示したものである。

表 4-2 は(4-48) 式の係数の符号を示したものである。

また、表から係数の符号が変るのはWだけであり、Wの符号が(1)の時は係数の変化はなく、(4-48) 式には根が存在しないので界面は安定となり、Wの符号が(+)の時は係数は2度変化するので、(4-48) 式には最大2個の根の存在することはあるが、界面の安定性がどうなるかは分からない。

係数Wの符号が(−)になるためには (4-48) 式から

\[m G_e - G_l - \frac{k_o V^2}{D^2} \leq 0 \]

でなければならない。従って界面が安定する条件は

\[G_l \geq m G_e - \frac{k_o V^2}{D^2} \]

となる。 (4-16) 式および (4-17) 式を用いてmG_eを書き換えると

\[G_l \geq \frac{V A T_e}{D} - \frac{k_o V^2}{D^2} \]

となる。前述のように、簡単な組成過冷基準では、G_l>mG_eで平らな界面は安定する。しかし、(4-50) 式では右辺に加えられている曲がりが液相線の温度均配を減少させることになるのでG_l>mG_eだけでは界面の安定性を予測することはできない。例えば、G_l<mG_eで組成的過冷が認められる条件でも (4-51) 式から平らな界面の安定が可能になることもある。

このように、Descartesの定理の利用により短時間安定基準を簡便に導くことができた。しかしこの方法は根があるかないか調べることで、符号が変化し根が存在の場合については何の答えも出ることができない。

4-3-6 正確な安定性的解析

これまでの説明で挿引数を用いて解析した固一液界面の安定-不安定移動の大略の意味は理解できたと思うが、計算を簡単にするために液体と固体の熱伝導度の差および溶融融溶熱の効果を無視してきた。安定-不安定移動を正確に解析するためには、MullinsとSekerkaによって導かれた (4-41) 式を出発点にしなければならないのは論理による。しかし、ここまでは理解を助けるため煩わしさを避けたのであるから、ここでも (4-41) 式から得られる結果だけを利用することにする。

SekerkaとMullinsの解析の結果に基づき次の安定基準を導いた。

\[\frac{(g+g)}{2m G_e} > S(A^*, k_o) \]

ここでS(A*, k_o)はSekerkaの安定関数と呼ばれるもので、
A*およびk_oの関数であり次のよう関係にある。
\[r^2 + (2k_o - 1) r = \frac{2k_o}{(A*)^{1/2}} \] \hspace{1cm} (4-53)
\[S(A*, k_o) = 1 + \frac{3}{2} A^* A^* (2k_o - 1) r^2 \] \hspace{1cm} (4-54)
\[A^* = \frac{k_o \Gamma T e V^2}{mG_c D^2} \] \hspace{1cm} (4-55)
ここでTはM-Sの定義によるT = σ/Lである。 (4-52) 式を書き換えると界面の安定条件は次のようになる。
\[\frac{1}{S(A*, k_o)} > mG_c \] \hspace{1cm} (4-56)
左辺をG* とおくと
\[G* > mG_c \] \hspace{1cm} (4-57)
この関係を組成的過冷基準による (4-18) 式、熱の影響を無視して導いたM-S理論基準の (4-50) 式と比較すれば、3 値の特徴をよく理解することができよう。
Sekerka \(^{20}\) はさらに安定関数S (A*, k_o) の論議を次のようになっている。(4-52) 式とM-S解析の凝固速度Vの次式
\[V = \frac{Dk_o G_c}{(k_o - 1) C_w} = \frac{k_o}{L} (g' - g) \] を用いて (4-52) 式を実験で測定できるパラメータで次のよう変換した。
\[\frac{2 k_o}{k_o} \left(\frac{L}{2 k_o} + \frac{G_c}{V} - mC_w \right) > S(A*, k_o) \] \hspace{1cm} (4-58)
図4-12はS (A*, k_o) とA*の関係を種々のk_oについて計算したものである。 図4-12から次のようことが分かる。
(1) A*が小さくなるとS (A*, k_o) が増加して1に近づき界面の安定領域が減少する。
(2) k_oが大きくなると界面の安定領域が増加する。

\[(3) A*が大きくなって1を超えるとS (A*, k_o) は0となり界面は常に安定な絶対安定 (Absolute Stability) な領域となる。 (4-16) 式を用いて (4-55) 式のA* を書き換えると
\[A^* = k_o \frac{V}{\Delta T e D} \] \hspace{1cm} (4-59)
となる。A* > 1 となるための凝固速度Vは
\[V = \frac{\Delta T e D}{k_o \Gamma} \] \hspace{1cm} (4-60)
となる。この式を用い、Fe-10%Ni につき、k_o = 0.95, D = 5 × 10⁻³m²/s, \(\Delta T e = 15K \), \(\Gamma = 10^{-4}Km \) を代入して計算すると、Vは8 m/s以上の凝固速度にならないとA* = 1 より大きくなりず絶対安定の領域に入らないことが分る。

4-3-7 実験による界面の安定-不安定変移の観察
M-S理論が提案されるまでは、 (4-18) 式の組成的過冷基準に従って界面の乱れが評価できると考えられ、たとえば図4-7 に示すSn-Pb合金のように、界面の安定-不安定変移は組成的過冷基準で十分説明できると考えられてきた。
M-S基準に関する実験的検証は、その中に多くの物性値が含まれ、それらの精度の確保が難しいこともあってあまり多くの実験は行われていないようである。
Davis and Fryzk \(^{21}\) もSn-In (25〜400ppm) 合金の凝固組織から界面の安定-不安定変移基準の計算値との関係を図4-13のように得ている。計算に必要なSn中のInの拡散係数は自己速で測定しているが、その他の物性値は文献値を用いている。

ここで界面安定の組成的過冷基準
\[\frac{G_c}{V} > k_o \frac{L}{2 k_o} - mC_w \] \hspace{1cm} (4-61)
の左辺を "Supercooling Test Function (STF)" と表わし、\(G_c, V, k_o \) の左辺を "Test Function (TF)" で表わした。通常の凝固過程ではS (A*, k_o) は非常に1に近いので (4-58) 式のTF > S (A*, k_o) はTF > 1 となる。界面安定の

\[\text{図4-12} \hspace{1cm} 2, 3 \text{の} k_o \text{における安定関数} S (A*, k_o) \text{と} A* \text{の関係} \]

\[\text{図4-13} \hspace{1cm} \text{Sn-In合金のサブ組織と計算された界面安定基準の関係} \]
条件をまとめると、
組成的過冷基準：STF > 1
M-S基準：TF > 1
図4・13から凝固速度が小さいG/Vの大きい（≒5000°C・S・cm⁻²）場合にM-S基準によく合うが、G/Vが小さい（≒100°C・S・cm⁻²）の場合はむしろ組成的過冷基準に合うことが分る。
佐藤ら（1994）はいくつかのAl合金について界面の安定不安定遷移を検討しており、図4・14中の1例でAl-Zn合金の結果を示す。ここで、D、kₚおよびσを自分で測定している。ここでGₚは（4-56）式で定義したものである。
図4・14（a）から、Al-Zn合金の平らな界面の乱れはM-S解析法に一致することが分る。また図4・14（b）から、Gₚ=mGₚの対角線と点線の間では、Gₚ>mGₚで組成的過冷が存在しないのにかかわらず界面は乱れて不安定になっていることが明らかである。こうした事実は簡単な解析で得られた（4-50）式によってすでに予測されていたことである。

おそらく
組成的過冷理論を出発点とし、平らな固一液界面の安定不安定遷移をM-S理論によって解析する。M-S理論の理解は容易ではないので、数学的厳密さを捨てて、M-S理論の概要をできるだけ多く理解できるような取扱いを試みてきた。
凝固過程に関する摂動論は、高次の摂動まで取った解析、平らでない界面の安定性の解析、界面波の結晶方位依存性に基づいた解析、結晶粒界を起点とした界面の乱れの解析など多くの新しい展開が試みられているようである。しかし、それらはいずれも難解であり日常の問題を解くのにそのまま適用できるものではないようである。これまでの解説で、平らな界面の安定性の解析はきわめずらしく、確
認する実験データは大切に取る必要があるが、通過する系が安定するM-S理論の大きさの chois と安定性を考えることが重要である。後述のように、凝固過程の手つながうセルとアデンドライトの大きさの推定に大きな威力を発揮するのみならず、それ以外に力強い結果も興味深いであろう。

記号

f(hkl)：結晶格子因子
L ：溶融潜熱
N ：界面における格子点の総数
n ：実際の表面原子の最近接原子数
Qₚ ：液体拡散の活性化エネルギー
R ：ガス定数
ΔSₚ ：1モル当たりの溶融エントロピー
T ：温度
Tₘ ：溶融温度
ΔT ：過冷度
V ：成長速度
Vₐ ：表面に単位時間に到達する原子数
Vₐ ：表面に単位時間に到達する原子数
σ(=ΔSe/R) ：無次元溶融エントロピー
ν ：表面にない原子の最近接原子数

図4・14 Al-Zn合金のサブ組織と計算された界面安定基準の関係

N220
(第4章)

\[A^* \] ；安定解析におけるパラメータ
\[a \] ；熱拡散係数
\[b \] ；\((V/2D + \left[(V/2D)^2 + \omega^2 \right]^{0.5}\)
\[C \] ；濃度
\[C_o \] ；合金の初期濃度
\[C_m \] ；界面から遠い液体中の溶質濃度
\[D \] ；液体中の拡散係数
\[F \] ；界面の安定関数
\[f_s \] ；固相率
\[G_c \] ；界面における液体の温度勾配
\[G_e \] ；界面における液体中の溶質濃度勾配
\[K^* \] ；界面の曲率
\[k_o \] ；平衡分配係数
\[L \] ；溶液潜熱
\[m \] ；溶液相勾配
\[P \] ；\(p = 1 - k_o\)
\[S \] ；摂動項
\[S(A^*, k_o) \] ；界面の安定関数
\[\Delta S_l \] ；容積当たりの溶液エントロピー
\[t \] ；時間
\[T \] ；温度
\[T_n \] ；バルク液体の温度
\[T_i \] ；液体の温度，液相線温度
\[T_s \] ；固体の温度
\[T_m \] ；純金属の融点
\[T_o \] ；平らな界面の液相線温度
\[V \] ；界面の移動速度
\[y \] ；界面における座標
\[Z \] ；観測系の座標
\[z \] ；界面に垂直な座標
\[\delta \] ；濃度境界層の厚さ
\[\delta_e \] ；濃度境界層の厚さ
\[\delta_s \] ；熱境界層の厚さ
\[\varepsilon \] ；摂動の振幅
\[\varepsilon' \] ；振幅の発達速度
\[\Gamma \] ；Gibbs-Thomson係数
\[\Gamma = \sigma/\Delta S_l \] ；Kurz-Fisherの定義
\[\sigma \] ；界面エネルギー
\[\lambda \] ；波長
\[\kappa \] ；熱伝導度
\[\bar{\kappa} \] ；平均熱伝導度

\[\phi \] ；温度勾配差，mG2-G1
\[\omega \] ；波数

文献

4-6) W.Kurz and D.J.Fisher : Fundamentals of Solidification, (1984), [Trans Tech Publication]
4-8) E.Scheil : Z.Metallk., 34 (1942), p.70
4-18) R.T.Delieves : Crystal Growth, (1975) [Pergamon, Oxford], p.40
4-19) 大平五郎, 佐藤有 : 日本学術振興会, 製鋼第19委員会第3分科会, 昭和53年2月9日

(知っておきたい金属凝固の基礎(II)は「鉄と鋼」Vol.48, No.8に掲載します。)