仙台周辺丘陵地における地形の人工変化

浅野隆

地表を人工的に変化させて新しい地表形態を作り、新たな利用価値を求めようとする傾向が強くなっている。その実力は地表形態を変化させるものの内でもっとも急激で大規模なもの1つである。それによって自然の地形とは異なった地形が新たに、いわば人工的な地形として現れてくる。今後ますます人工的な地形が増加すると考えられるけれども、実際にどのような自然の地形がどのような人工的な地形に変化したかを調べることは、現在のそして今後の地表形態の変化を知る上で必要なことであると思う。

ここでは顕著な変化をみせている仙台市周辺の丘陵地を例にとり、主に地表形態の変化を中心に述べる。現在も変化は進展しており、1時点での考察にとどまるが、大きな流れは捉えることができると思う。

1 仙台周辺の丘陵地の概観

図1に示されるように丘陵地は仙台市の北部、西部そして南部にみられる。特に変化が進んでいる主に北部、西部の丘陵地である（第1・2図）。

仙台市街北部の七北田丘陵は西部では高度200 m程度であるが、大部分はほぼ100 mの定高性を持ち、東部へだしてに高度を減じながら舌状にのびている。

西部の青葉山丘陵は竜の口峡谷を境にして北部は高度200-100mの台地性の丘陵を持つが、南部では北西一南東の方向を持つ大小の谷が発
第2図　開始年代別変地分布
仙台市都市計画図・仙台市宅地開発状況調査（昭和44年9月現在）から作図。作図にあたっては1つの変地範囲を同時に着工されたと考えた。計画図と地形図の変地範囲は年代の相違で若干異なることもある。

速している。
富谷丘陵は七北田川の北岸に広がっており最
高高度100m程度の著しい定高性を持った丘
陵である。
その他に西部、南西部の丘陵地にも変地地が
進出している。

2　変地の分布と拡大
仙台市周辺にみられる丘陵地の変地の目的
は、主に住宅用地としてであるが、その他に学
校用地、ゴルフ場、墓地などがある。図2から
わかるように、七北田丘陵は市街地に面した部
分が変地されているが、特に国道4号線から東
部は丘陵地のほとんど全体にわたって変地され
ている。青葉山丘陵の北部では平坦な頂部を利
用した変地地が分布し、南部では谷をはさんだ
斜面に広く分布している。
1950年代後期に最初の宅地開発のために改
変が七北田丘陵西部、青葉山丘陵南部の順に始まり、その後それぞれ周辺部へ拡大していった。杉森（1966）が指摘しているように、住宅地としての変化は市街地の外縁に連続して立地するものと、飛地的に立地するものとのタイプに分けることができる。そして飛地的に建設されるものがお互いに近距離に立地すると、次の段階ではそれらの中間が変化される傾向にある。遠距離に個別に立地したもののは、将来の変化の核となることが予想される。

変化の規模について考えると、10 ha以下が0件で全体の件数の63％、10〜20 haが13件で11.5％、20〜50 haが18件で16％、50〜100 haが6件で5％、100 ha以上が5件で4.5％をそれぞれ占め、100 ha以上の変化の面積の合計は740.5 haで全体の変化面積の34％に達する。

3. 地表形態の変化

変化された場所でどのような地表形態の変化が生じたかを次に述べる。作業の基図は2万5千分の1の地形図である。

1）水系の変化 改変地が複数の尾根にわたって立地した場合、谷の部分は埋められて水系が消減する。その場合、埋められた部分までの谷が消滅し、残された部分は元の自然の地形を維持することになる。1つの尾根に立地するような場合には、尾根の側面の小さな水系が消滅して、尾根の間を流れる水系は元のままになるため、残された水系は単純な形になる。またある水系を挟んで両側に異なった変化が生じるような場合も単純な形になる。大規模に変化が進んだ七北田水系の変化前の変化後の水系図を比較すると（第3図）、水系が消滅した部分と変化の範囲とはほぼ一致する。

これらは表面水系の変化であり、降水は排水
路により処理されるが、その際一部では元の水系がそのまま、あるいは暗渠の形で排水路の役目を持っているのが見受けられる。

2) 起伏量の変化 改変地においてどのような起伏量の変化が生じたか七北田丘陵と青葉山丘陵について調べる。改変前と改変後の2万5千分の1の地形図に地形図上で1cm平方の方眼をつけ、それぞれの方眼に含まれている10m間隔の等高線の本数を数えて起伏量をあらわすものとした2)。改変の前後において使用

第4図 七北田丘陵起伏量図上、改変前、下、改変後。数値は等高線本数（10m間隔）、細線は改変範囲を示す。

2) 井関・加藤・御船（1967）の方法を参考にした。井関らは5万分の1の地形図に1cmの方眼をかけ20m間隔の等高線を数えている。
した地形図の精度が異なるため、細かい議論はできないが、変化の傾向だけは知ることができると思う。

変化前の起伏量図をもとにして、いかなる起伏量のところに変化が立地したかを調べることができる。第4図には七北田丘陵の起伏量図を示す。七北田丘陵では立地した方眼の等高線本数が3〜4本のものが多く、西部においては6本の方眼に立地している。丘陵山丘陵においては東に4〜6本の方眼に立地しており、さらに7〜8本の方眼に立地している。倉敷山田丘陵においても、丘陵丘陵においても現在の変化よりも西へ向いに従って起伏が増し傾向があるので、現在のところ起伏量の小さい場所に立地しているとみられる。

丘陵においては尾根を切り谷を埋める形で変化が行なわれるため、変化後にみられる変化範囲内の起伏量は全体的に減少している。しかし、起伏の減少の度合はそれぞれ場所によって異なっている。七北田丘陵においては国道4号線を境にして、東部、西部で変化による起伏量の変化が異なっており、東部では0〜1本の方眼が多く見られるのに対して、西部では2〜3本の方眼が多くなっている。丘陵丘陵では3〜5本の方眼が多くなっている。

以上のことは表に具体的な数値で示される。この表では変化範囲内のある方眼の変化前の起伏量が、変化後にはどのように変化したかを示され、さらに対角線方向に数値が集中していて、変化が少なくな、対角線から離れると従って起伏量の変化が大きくなることがわかる。この表によって七北田丘陵東部においては変化の程度が強いが、西部は東部に比べて変化が弱いことが認められる。丘陵丘陵においては比較的対角線上に並び変化がより少なくとなっている。変化の量を全体について合計した表から一般的な変化の程度をみると変化のない方眼が、そして1〜2本の減少を示す方眼は変化範囲内の方眼数の70%を占める。逆に起伏の増加した方眼がみられるが、境界線でみられるものが少ないところから土壌が周辺部におい広がられたものとみなすことができる。

3）切土と盛土の分布　変化前の地形図上に変化後の地形図の等高線を写すことによって、実際の切土と盛土の分布を知ることができる（今
野1964)、同時にどの程度の垂直的な変化が生じたかも知ることができ。特に大きな変化を示していると思われる七北田丘陵東部（第5図）をみると、当然のことながら切土は尾根の部分、盛土は谷の部分にあたる。尾根の部分で最大30 m程度切られ、谷の部分でもほぼ同じ程度埋められているのがわかる。

4 改変前の地表形態の比較

改変によって地形に大小の変化が生じる。改変地はかなり起伏を残しているところがあり、一般になだらかな起伏を持った地表として認められる。そしてその起伏はほぼ元の地形の起伏の概形に一致している。この起伏の残される程度も場所ごとに異なり、七北田丘陵東部のように広く変化してつく場所では元の地形はさほど見当たらないが、西部では元の地形の特徴が残されている場所が多い。青葉山丘陵の南部にみられるものは、北西一南東の方向に発達している谷の谷頭部では元の地形はほとんど残されていないが、広く開いた谷の谷壷や尾根の頂部などにはほぼ残されている（写真2）。

これら元の地形の残される程度は一般に変地の個々の面積の大小など関係していることが認められる。例えば七北田丘陵東部のように100 ha以上の面積を持つ個々の変地が集まっているところでは、元の地形の残る程度はそれほど強くない。しかし、20 ha以下の面積の変地では、尾根の大きさにもよるが、1つの尾根、あるいは1つの尾根の側面に立地するような傾向になるため、立地した部分だけが変化され他はそのまま残される。そのため谷に作られた変地は依然として谷にあり、尾根のものは尾根である傾向は残される。しかもこれら比較的小規模な変地がお互いに隣接して立地し、全体の面積が大規模な1つの変地に匹敵する面積に達していたながらかなり元の地形を残

A

B

C

第6図 改変の様式

第5図 切土と盛土（七北田丘陵東部）

a: 切土，b: 盛土，c: 改変後の等高線（10 m 間隔），d: 改変前の等高線（20 間隔）
す場合がある。小規模な変地が隣接しているために、元の地形に忠实になっていることは、変地相互の連絡があまりないことを示しているものと考えられる。

変地後の地形としては平坦面が望まれるが、新たに平坦面を作り出す副産物として多数の崖が新しく生じることになる。その中に1つの変地をとりまいて境界部をなしている崖をみることができる。住宅地としての変地が隣接している場合には、この崖を境にして住宅の建築戸数に差がみられ、変地の新旧の区別をつけることができる場合がある。ところでこの崖は隣接した変地相互の連絡がないため生じるもの1つである。つまり先に変地に着工した範囲はその内部でのみ変地され、後に隣接して立地した変地範囲は先に変地された所とは無関係に変地を進めるため、崖があればその崖を境界部に残してしまった結果である。相互に連絡がなくと言うことは、小規模な変地において比較的元の地形に忠实になることの理由にもなる。つまり面積的に小規模であるために変地範囲内で自由になる土量が少なく、他の場所との相互の連絡がないため結果として元の地形に忠实になってしまうことになる。

逆に大規模な変地であるからといってまったく元の地形を残していないとは言えない。大規模な変地は大規模なために元の起伏の特徴を大まかな形で残している。例えば仙台市で造成しているstrconv谷地は七北田丘陵の最も東端にあがる。面積約178haで仙台周辺では最も大規模なもの1つであり、起伏も少なく特徴的な変地である。一見元の地形をまったく残さないように見える。しかし実際には元の尾根のあった場所が最も高く、丘陵内部へ深く入
り込んでいた谷のあった場所が最も低くその差は10mにも達するし、最高部が南より、最低部が北よりであるため北向きの斜面が広くなっている。以上述べたことから、面積の規模の遠いが元の地形の反映の程度の強弱と関係があると考えられる。

変地の新旧からみてみると、ある程度の面積が確保されると、新しい変地ほど平坦である傾向が強くなっている。今後の変地による地表形態の知る手がかりになるであろう。

ここで注意しなければならないのは、一旦利用されてしまえばそれで地形は固定され、その後の改変は全く望まれないことである。

5 改変の様式

丘陵地の変地について元の地形から新しい地表形態への変化過程をいくつかの型に分類することができる。佐藤(1969)は低地を含めた宅地造成工事を5つの型にわけている。単独でみられるよりも組み合わせてみられることの方が多いが、丘陵地の表面形態の変地からは次の3つの型に類別できるように思う(第6図)。A) いくつかの尾根にまたがって変地が進めるような場合にみられる。複数の尾根にまたがるだけの面積が必要になる。この型は七北田丘陵東部に典型をみる。他に青葉山丘陵南部の谷頭部などにもみられる。B) 丘陵の頂部に立地するような場合にみられるもので、頂部が平坦な場合典型的である。この型の代表的なものは青葉山丘陵の北部にみられ、平坦な丘頂面を利用している。C) 丘陵の斜面や谷壁に立地するような場合にみられる。1つの尾根の側面を変地するような場合も含める。たとえば七北田丘陵の国道沿いあるいは七北田丘陵の東南部にみられ
論文

丘陵地の土地利用の変化としての地表形態の変化を取りあげて仙台周辺について考察した。変化によって元の地形の細部はそれぞれ変化するが、その変化は自然の地形変化と比べても最も激しいかつ異質なものである。変化に関しては全体を観察する基準がみられず、それぞれの不連続性を作り出している。新しく出来た地表は利用された時点以降固定された地表であることが期待される。変化後の地表は起伏が小さくなり、大気および変化の面積に応じた元の地形の特徴を残している。元の地形の残る程度は、変化地の面積、立地地点の地形、そして変化年度に応じた技術に関係がある。

本稿作成にあたり御指導下さった西村嘉助教授、中村義男助手に感謝します。

(1970. 5. 20 受理)

文 献

井関弘太郎・加藤茂生・御船 哲 (1967)：大規模住宅開発の進地選定に関する地理学的研究 一名古屋都市圏事例として 人文地理 19 491～513
今野 博 (1964)：土木学会論集 土地造成 鹿島研究所出版会 100～153
佐藤俊雄 (1969)：横浜市における宅地造成の地理学的研究 地平 42 363～375
杉里泰史 (1966)： stencilにおける丘陵地の宅地造成 東北地理 18 83

Transformed Hill Surfaces around Sendai

Takashi ASANO

The surface forms of hill land such as the Nanakita Hills in the north of Sendai and the Aobayama Hills in the west, and recently the Tomiya Hills further to the north have been under the process of transformation by human activity mainly on the purpose to make residential areas. In this paper the author tried to investigate the changes from initial hill surfaces to transformed ones, concerning drainage patterns, reliefs and so on.

Needless to say, the ridges of hills were cut and valleys were filled in the areas (Fig. 5). The surface drainage in the former surfaces either vanished or were simplified. The relief of initial hills were, in general, lessened. However there are some varieties in changes of reliefs, i.e. strong in the Nanakita Hills, especially in the eastern part, and weak in the Aobayama Hills (Table). Such variations may be connection with the extents of individual constructed areas. An area of vast extent the outline of initial reliefs is not to be observed clearly, while in an area of small extent, the initial reliefs are better preserved because the range of earth mass removed is limited in such an area.

When there are several housing projects, neighboring one another, there are discontinuities of surface forms among them. Such discontinuities are the results of different sizes of the projects, differences in initial forms, and changes in the engineering techniques.