The Amyloid β Protein Precursor Mutations Linked to Familial Alzheimer's Disease Alter Processing in a Way That Fosters Amyloid Deposition

STEVEN G. YOUNKIN

Division of Neuropathology, Institute of Pathology, Case Western Reserve University, Cleveland, Ohio, USA

YOUNKIN, S.G. The Amyloid β Protein Precursor Mutations Linked to Familial Alzheimer's Disease Alter Processing in a Way That Fosters Amyloid Deposition. Tohoku J. Exp. Med., 1994, 174 (3), 217-223 — Normal processing of the amyloid β protein precursor (BAPP) results in secretion of a soluble 4 kD protein essentially identical to the amyloid β protein (Aβ) that forms insoluble fibrillar deposits in Alzheimer's disease (AD). Strong evidence that amyloid deposition plays a critical role in the development of AD has come from the identification of familial AD (FAD) kindreds in which the AD phenotype cosegregates with mutations in the BAPP gene that are located close to the NH2 or COOH end of the Aβ peptide. The location of these mutations immediately suggests that they may cause AD by altering BAPP processing in a way that is amyloidogenic. In a previous study, we found that transfected cells expressing the NH2 side mutant secrete 6-fold more 4 kD Aβ than those expressing wild type BAPP or COOH side mutants. We have now shown that the mutations on the COOH side of Aβ alter processing to increase secretion of the more amyloidogenic Aβ1-42 form which constitutes only a small percentage of the total 4 kD Aβ produced. Thus our data show that all of the FAD-linked BAPP mutations alter BAPP processing in a way that increases the likelihood of amyloid formation.

Alzheimer's disease; familial; amyloid; precursor; mutation

The ~4 kD (39-43 residue) amyloid β protein (Aβ), which is deposited as amyloid in Alzheimer's disease (AD), is encoded as an internal peptide that begins 99 residues from the COOH terminus of a set of 695-770 residue glycoproteins referred to as the amyloid β protein precursor (βAPP). Using cultured cells transfected with βAPP expression constructs, we have previously shown the βAPP is normally processed into a complex set of 8–12 kD COOH-terminal derivatives that includes a potentially amyloidogenic ~11.4 kD form with Aβ at its NH2 terminus (Estus et al. 1992; Cheung et al. 1994). More recently (Shoji et al. 1992), we have shown that the 4 kD Aβ is released in appreciable amounts from transfected cells expressing full length βAPP or an Aβ-bearing COOH-terminal derivative and in lesser amounts from cells expressing only endogenous βAPP.
Similar results have been reported by several other groups (Seubert et al. 1992; Busciglio et al. 1993; Haass and Selkoe 1993). Thus there is a normal metabolic pathway that produces and releases significant amounts of a soluble ~4 kD \(\beta \text{APP} \) derivative essentially identical to the \(\beta \text{APP} \) deposited as amyloid in Alzheimer's disease.

In rare families, AD is inherited as an autosomal dominant trait. Strong evidence that amyloid deposition plays a critical role in the development of AD has come from the identification of familial AD (FAD) kindreds in which the AD phenotype cosegregates with mutations in the \(\beta \text{APP} \) gene. Three of the FAD-linked \(\beta \text{APP} \) mutations convert the valine located three residues COOH to \(\beta \text{APP} 43 \) (val717 in \(\beta \text{APP} 770 \)), to isoleucine (\(\Delta I \)), phenylalanine (\(\Delta F \)), or glycine (\(\Delta G \)) (Chartier-Harlin et al. 1991; Goate et al. 1991; Hardy and Alzheimer's Disease Research group 1991; Murrell et al. 1991; Naruse et al. 1991; Yoshioka et al. 1991). A fourth double mutation (\(\Delta NL \)) alters the lysine-methionine located immediately NH2 to \(\beta \text{APP} 1 \) (lys670-met671 in \(\beta \text{APP} 770 \)) to asparagine-leucine (Mullan 1992). The location of these mutations in close proximity to \(\beta \text{APP} \) immediately suggests that they may cause AD by altering \(\beta \text{APP} \) processing in a way that is amyloidogenic.

To determine if these mutations do, in fact, alter \(\beta \text{APP} \) production in the pathway described above, we stably transfected human neuroblastoma (M 17) cells and compared lines expressing normal or mutant \(\beta \text{APP} 695 \) (Cai et al. 1993). After continuous metabolic labeling for 8 hr, cells expressing mutant \(\beta \text{APP} \Delta NL \) showed a 5-fold increase in the relative amount of the ~11.4 kD \(\beta \text{APP} \) bearing COOH-terminal \(\beta \text{APP} \) derivative, and they released 6-fold more 4 kD \(\beta \text{APP} \) into the medium. Similar results have been reported by Citron et al. (1992). These observations (i) provide strong evidence that this mutant \(\beta \text{APP} \) causes AD because it undergoes altered processing that releases increased amounts of \(\beta \text{APP} \), and (ii) indicate that the pathway producing \(\beta \text{APP} \) in cultured cells is highly relevant to AD. More generally, the linkage of FAD to a \(\beta \text{APP} \Delta NL \) mutation demonstrated to increase \(\beta \text{APP} \) production greatly strengthens the hypothesis that amyloid deposition plays a central role in the development of all forms of AD.

If amyloid deposition is invariably pivotal in the development of AD, then both the \(\beta \text{APP} \Delta NL \) and the \(\beta \text{APP} \Delta 717 \) mutations (\(\Delta I \), \(\Delta F \), and \(\Delta G \)) should alter \(\beta \text{APP} \) processing in a way that is amyloidogenic. Our data showed, however, that transfected M 17 cells expressing \(\beta \text{APP} 695 \Delta I \) do not release increased amounts of \(\beta \text{APP} \) (Cai et al. 1993). To account for this observation, we proposed that the FAD-linked \(\Delta 717 \) mutations on the carboxyl side of \(\beta \text{APP} \) (\(\Delta I \), \(\Delta F \), \(\Delta G \)) shift cleavage to favor generation of longer \(\beta \)s such as \(\beta 1-42 \) or \(\beta 1-43 \). Since these longer \(\beta \)s form amyloid fibrils more rapidly than \(\beta 1-40 \) (Hilbich et al. 1991; Burdick et al. 1992; Jarrett and Lansbury 1993; Jarrett et al. 1993), shifting the site of cleavage could result in amyloid deposition without increasing the overall amount of \(\beta \text{APP} \) produced.
To test this hypothesis, we used two methods to compare the effect of the βAPP717 mutations on the relative amounts of Aβ1–40 and Aβ1–42, 43 secreted by appropriately transfected M17 cells (Suzuki et al. 1994). In the first method, Aβ1–40 and Aβ1–42, 43 were distinguished and quantitated by isolating metabolically labeled Aβ from conditioned media, digesting the Aβ with cyanogen bromide to release radiolabeled carboxyl-terminal peptides (Aβ36–40 or Aβ36–42, 43), and analyzing the carboxyl-terminal peptides by RPLC using a C4 column. In the second method, highly sensitive sandwich ELISAs that discriminate synthetic Aβ1–40 from Aβ1–42, 43 were employed. With both methods, we invariably observed the relative amount of Aβ1–42, 43 produced by βAPP717 mutants (ΔI or ΔF) to be 1.5–2.0-times that produced by control βAPPs. Quantitation of the sandwich ELISA data showed the percentages of Aβ1–42, 43 secreted by cells expressing wild type βAPP695, βAPP695ΔI, and βAPP695ΔF to be 17.5±0.5%, 25.7±0.5% (p<0.002) and 31.4±0.6% (p<0.0002), respectively.

Although the βAPP717-induced increase in long Aβ production is relatively modest, in vitro studies by Lansbury and his colleagues (Jarrett and Lansbury 1993; Jarrett et al. 1993) indicate that the impact of this shift on amyloid deposition could be substantial. These studies indicate that Aβ aggregation into amyloid is a nucleation dependent polymerization (Jarrett and Lansbury 1993; Jarrett et al. 1993), and this type of seeded polymerization can be extremely concentration dependent. Numerous studies have shown that Aβ1–42 and 43 nucleate rapidly compared to Aβ1–40 (Hilbich et al. 1991; Burdick et al. 1992; Jarrett and Lansbury 1993; Jarrett et al. 1993). Thus the modest increase in long Aβ produced by the Δ717 mutations could substantially increase amyloid deposition in the decades that precede the onset of clinical symptoms in patients who carry these mutations.

With the discovery that Aβ is produced and released by normal processing of the βAPP, it is clear that Aβ is an unusual secreted protein released from within the βAPP through cleavage by β and γ secretase (Fig. 1). Thus in AD, as is the other known amyloidoses, amyloid deposition is a process in which a secreted protein forms insoluble fibrils that deposit extracellularly. The rate at which amyloid accumulates in the brain will depend on the four processes illustrated schematically in Fig. 2: (i) the rate at which the various Aβ peptides are secreted, (ii) the rate at which these secreted Aβ peptides are removed (together these two rates determine Aβ concentration), (iii) the rate at which Aβ fibrils form at any prevailing concentration of Aβ, and (iv) the rate at which deposited amyloid fibrils are removed. Recently it has become apparent that a number of extracellular proteins can form complexes with Aβ (Ghiso et al. 1993; Schwarzmann et al. 1993). These Aβ-binding proteins are potentially very important not only because they will influence the fraction of Aβ that is free but also because they may substantially influence removal of secreted Aβ, the rate at which amyloid
fibrils form, or the rate at which amyloid fibrils are removed (Fig. 2).

In the brains of all patients with AD, substantial amounts of amyloid are deposited extracellularly. Thus it is reasonable to propose that amyloid deposition may be an essential element in a serial cascade of age-related pathologic changes that ultimately produces the dementia observed in AD. The FAD-linked βAPPΔNL and βAPP 717 mutations provide strong support for this hypothesis, because each of these genetic changes reliably produces AD, and each enhances amyloidogenesis by increasing secretion of total Aβ or Aβ1–42 (Fig. 2). It is likely that trisomy 21 also causes AD by enhancing amyloid deposition since patients with trisomy 21 have an extra copy of the βAPP gene and show increased expression of βAPP (Tanzi et al. 1987) which is normally processed to release Aβ.

Recently it has become evident that there are many individuals with extensive cerebral Aβ deposition who are not demented. Given the strong genetic evidence favoring the amyloid deposition hypothesis, it is reasonable to propose that these are at risk individuals who have not yet progressed to dementia either because amyloid deposition is recent or because genetic or environmental factors involved in the progression from amyloid deposition to dementia are not favorable. At autopsy, there is some Aβ deposited in the brain of almost everyone
over 65 indicating that the conditions needed for minimal amyloid deposition are commonplace in the elderly human brain. The realization that the incidence of AD may be as high as 50% in individuals over the age of 85 indicates that with sufficient aging an extraordinary fraction of the population may deposit enough amyloid to produce dementia. Thus it appears that there is a strong tendency toward amyloid deposition in the aging human brain and the relatively subtle differences in the factors that promote amyloid deposition may decide whether or not substantial amounts of amyloid are deposited. Since there appears to be considerable interindividual variation in the pathology that is provoked by amyloid deposition, the challenge for those favoring the amyloid deposition hypothesis is to demonstrate that all AD can be accounted for in terms of factors that influence amyloid deposition or pathology that is provoked by amyloid deposition.

References

