Transactions of the Japanese Society for Artificial Intelligence
Online ISSN : 1346-8030
Print ISSN : 1346-0714
ISSN-L : 1346-0714
Special
Staistical-mechanical Iterative Algorithm by means of Cluster Variation Method in Compound Gauss-Markov Random Field Model
Kazuyuki Tanaka
Author information
JOURNAL FREE ACCESS

2001 Volume 16 Issue 2 Pages 259-267

Details
Abstract
Compound Gauss-Markov random field model is one of Markov random field models for natural image restorations. An optimization algorithm was constructed by means of mean-field approximation, which is a familiar techniques for analyzing massive probabilistic models approximately in the statistical mechanics. Cluster variation method was proposed as an extended version of the mean-field approximation in the statistical mechanics. Though the mean-field approximation treat only the marginal probability distribution for every single pixel, the cluster variation method can take acount into the correlation between pixels by treating the marginal probability distribution for every nearest neighbor pair of pixels. In this paper, we propose a newstatistical-mechanical iterative algorithm by means of the cluster variation method for natural image restorations in the compound Gauss-Markov random field model. In some numerical experiments, it is investigate howthe proposed algorithm improves the quality of restored images by comparing it with the algorithm constructed from the mean-field approximation.
Content from these authors
© 2001 JSAI (The Japanese Society for Artificial Intelligence)
Previous article Next article
feedback
Top