人工知能学会論文誌
Online ISSN : 1346-8030
Print ISSN : 1346-0714
原著論文
Genetic Image Networkに基づく画像分類アルゴリズムの自動構築
白川 真一中山 史朗矢田 紀子長尾 智晴
著者情報
ジャーナル フリー

2010 年 25 巻 2 号 p. 262-271

詳細
抄録

Automatic construction methods for image processing proposed till date approximate adequate image transformation from original images to their target images using a combination of several known image processing filters by evolutionary computation techniques. Genetic Image Network (GIN) is a recent automatic construction method for image transformation. The representation of GIN is a network structure. In this paper, we propose a method of automatic construction of image classifiers based on GIN, designated as Genetic Image Network for Image Classification (GIN-IC). The representation of GIN-IC is a feed-forward network structure. GIN-IC is composed of image transformation nodes, feature extraction nodes, and arithmetic operation nodes. GIN-IC transforms original images to easier-to-classify images using image transformation nodes, and selects adequate image features using feature extraction nodes. We apply GIN-IC to test problems involving multi-class categorization of texture images and two-class categorization of pedestrian and non-pedestrian images. Experimental results show that the use of image transformation nodes is effective for image classification problems.

著者関連情報
© 2010 JSAI (The Japanese Society for Artificial Intelligence)
前の記事 次の記事
feedback
Top