人工知能学会論文誌
Online ISSN : 1346-8030
Print ISSN : 1346-0714
原著論文
述語項構造を介した文の選択に基づく音声対話用言語モデルの構築
吉野 幸一郎森 信介河原 達也
著者情報
ジャーナル フリー

29 巻 (2014) 1 号 p. 53-59

詳細
PDFをダウンロード (392K) 発行機関連絡先
抄録

A novel text selection approach for training a language model (LM) with Web texts is proposed for automatic speech recognition (ASR) of spoken dialogue systems. Compared to the conventional approach based on perplexity criterion, the proposed approach introduces a semantic-level relevance measure with the back-end knowledge base used in the dialogue system. We focus on the predicate-argument (P-A) structure characteristic to the domain in order to filter semantically relevant sentences in the domain. Moreover, combination with the perplexity measure is investigated. Experimental evaluations in two different domains demonstrate the effectiveness and generality of the proposed approach. The combination method realizes significant improvement not only in ASR accuracy but also in semantic-level accuracy.

著者関連情報
© 人工知能学会 2014
前の記事 次の記事

閲覧履歴
feedback
Top