人工知能学会論文誌
Online ISSN : 1346-8030
Print ISSN : 1346-0714
速報論文
複数のトピックの時間的依存関係を考慮した時系列混合モデル
佐々木 謙太朗吉川 大弘古橋 武
著者情報
ジャーナル フリー

2015 年 30 巻 2 号 p. 466-472

詳細
抄録

This paper proposes a mixture model that considers dependence to multiple topics. In time series documents such as news, blog articles, and SNS user posts, topics evolve with depending on one another, and they can die out, be born, merge, or split at any time. The conventional models cannot model the evolution of all of the above aspects because they assume that each topic depends on only one previous topic. In this paper, we propose a new mixture model which assumes that a topic depends on previous multiple topics. This paper shows that the proposed model can capture the topic evolution of death, birth, merger, and split and can model time series documents more adequately than the conventional models.

著者関連情報
© 人工知能学会 2015
前の記事 次の記事
feedback
Top