TRANSACTIONS OF THE JAPAN SOCIETY FOR AERONAUTICAL AND SPACE SCIENCES
Online ISSN : 2189-4205
Print ISSN : 0549-3811
ISSN-L : 0549-3811
 
Airfoil Tonal Noise Generation in Resonant Environments
Takashi ATOBEMarthijn TUINSTRAShohei TAKAGI
Author information
JOURNAL FREE ACCESS

2009 Volume 52 Issue 176 Pages 74-80

Details
Abstract

To clarify tonal noise generation, an experimental study on airfoil tonal noise was undertaken using a conventional wind tunnel, which allows acoustic reflection on test section walls. A two-dimensional wing model with the NACA0015 cross-section was used at 5 degrees angle of attack. Most previous experiments conducted in anechoic environments commonly show that the tonal noise frequency is selected in an overall trend of U1.5 (U is uniform velocity) locally consisting of a step-like structure, and Tollmien-Schlichting disturbances are rapidly amplified in the backflow region near the trailing edge of the pressure surface. The present experiments in an acoustically resonant environment show that the tonal noise emanates in accordance with the aforementioned features. However, the ladder-like structure has a different local slope from that observed in anechoic flow. These characteristics suggest that acoustic resonance does not play a fundamental role in tonal noise generation. Observation by hot-wire and smoke visualization techniques shows that unsteady disturbances rather than Tollmien-Schlichting waves are rapidly magnified by the Kelvin-Helmholtz instability in the backflow region. The frequency selection mechanism at tonal noise generation still remains unsolved.

Content from these authors
© 2009 The Japan Society for Aeronautical and Space Sciences
Previous article Next article
feedback
Top