TRANSACTIONS OF THE JAPAN SOCIETY FOR AERONAUTICAL AND SPACE SCIENCES
Online ISSN : 2189-4205
Print ISSN : 0549-3811
ISSN-L : 0549-3811
 
Theoretical Considerations of Sidewall Interference Corrections for Transonic Shock Tube Airfoil Testing
Masashi KASHITANIYutaka YAMAGUCHIEisaku SUNAHARAHideki KITANO
Author information
JOURNAL FREE ACCESS

2010 Volume 52 Issue 178 Pages 193-198

Details
Abstract

The effects of the sidewall boundary layers in transonic shock tube airfoil flow were investigated. We attempted to correct the effects of the sidewall boundary layers using the Barnwell-Sewall and Murthy methods for shock tube boundary layers. Petersen’s boundary layer theory, which evaluates the modern wall-skin friction coefficients for shock tubes, was used in this analysis, and the results showed that the Mach number correction ΔM (the difference between the free stream Mach number (hot gas Mach number) and the corrected Mach number) increases as the hot gas Mach number M2 increases under the condition of fixed time for the shock tube. This is caused by the boundary layer development, which grows thicker as the hot gas Mach number increases. Furthermore, when analysis is performed under the condition of constant displacement thickness 2δ*b, the Mach number correction ΔM gradually increases with an increase in the hot gas Mach number. This trend becomes very pronounced with increasing displacement thickness. In addition, after performing a comparison, we found that the correction of the shock wave location is in the direction of the improved agreement with the 2D CFD results when applied to the shock tube experiment.

Content from these authors
© 2010 The Japan Society for Aeronautical and Space Sciences
Next article
feedback
Top