TRANSACTIONS OF THE JAPAN SOCIETY FOR AERONAUTICAL AND SPACE SCIENCES
Online ISSN : 2189-4205
Print ISSN : 0549-3811
ISSN-L : 0549-3811
Fundamental Design Optimization of an Innovative Supersonic Transport Configuration and Its Design Knowledge Extraction
Naohiko BANWataru YAMAZAKIKazuhiro KUSUNOSE
著者情報
ジャーナル フリー

2016 年 59 巻 6 号 p. 340-348

詳細
抄録

The generation of shock waves is inevitable during supersonic cruising, which results in the generation of wave drag as well as sonic boom on the ground. Some innovative concepts, such as the supersonic biplane concept and supersonic twin-body fuselage concept, have been proposed recently to reduce the supersonic wave drag dramatically. In this study, these two concepts are adopted, and then the aerodynamic and sonic boom performance of innovative supersonic transport (SST) wing-body configurations are discussed using numerical approaches. This study is performed to obtain design knowledge for the innovative SST using an optimization method. In this research, the number of design variables is limited to only three in order to obtain fundamental design knowledge of the innovative SST configuration. The three design variables are utilized to deform the wing section shape. The wing section shape of a Busemann-type-biplane/twin-body model is optimized under the conditions of a design Mach number of 1.7 and angle of attack of 2 degrees. The optimized results show the tradeoff relationship between lift-drag ratio and maximum overpressure of sonic boom distribution on the ground. To obtain detailed knowledge of the design space, analysis of variance and visualizations of response surfaces of objective functions are also performed.

著者関連情報
© 2016 The Japan Society for Aeronautical and Space Sciences
前の記事 次の記事
feedback
Top