BANDO-CALABI-FUTAKI CHARACTER OF COMPACT TORIC MANIFOLDS

Dedicated to Professor Tadao Oda on his sixtieth birthday

YASUHIRO NAKAGAWA

(Received November 24, 1999, revised August 28, 2000)

Abstract. The Bando-Calabi-Futaki character of a compact Kähler manifold is an obstruction to the existence of Kähler metrics with constant scalar curvature, which is a generalization of the Futaki character of a Fano manifold. In this paper, we study the Bando-Calabi-Futaki character of a compact toric manifold. In particular, we shall prove that the Bando-Calabi-Futaki character of a compact toric manifold vanishes on the Lie algebra of the unipotent radical of the automorphism group.

1. Introduction. Let X be a compact connected r-dimensional complex manifold and $\eta \in H^2(X; \mathbb{R})$. We assume that η is positive, that is, there exists a Kähler metric g on X such that its Kähler form

$$\omega_g := \sqrt{-1} \sum_{i,j=1}^{r} g_{ij} dz^i \wedge d\overline{z}^j$$

represents $2\pi \eta$ in the de Rham cohomology group $H^2_{dR}(X; \mathbb{R})$, where (z^1, z^2, \ldots, z^r) is a local holomorphic coordinate on X. We denote by $\text{Aut}^0(X)$ the identity component of the group $\text{Aut}(X)$ of holomorphic automorphisms of X, whose Lie algebra is identified with the Lie algebra $H^0(X; \mathcal{O}(T^{1,0}X))$ of holomorphic vector fields on X. Here $T^{1,0}X$ is the holomorphic vector bundle of tangent vectors of type $(1,0)$ on X. Recall that the Albanese map of X to the Albanese variety $\text{Alb}(X)$ naturally induces a Lie group homomorphism $\alpha_X : \text{Aut}^0(X) \to \text{Aut}^0(\text{Alb}(X)) \cong \text{Alb}(X)$.

Let G_X be the identity component of the kernel of the homomorphism α_X, and \mathfrak{g}_X the corresponding Lie subalgebra of $H^0(X; \mathcal{O}(T^{1,0}X))$. Then, by a theorem of Fujiki [6], G_X has a natural structure of a linear algebraic group (defined over \mathbb{C}). We denote by U_X the unipotent radical of G_X. More generally, we consider a linear algebraic group G (defined over \mathbb{C}) and a homomorphism $\rho : G \to \text{Aut}(X)$ of algebraic groups. By $\rho_* : \mathfrak{g} \to H^0(X; \mathcal{O}(T^{1,0}X))$, we denote the Lie algebra homomorphism induced from ρ, where $\mathfrak{g} := \text{Lie}(G)$ is the Lie algebra of G.

2000 Mathematics Subject Classification. Primary 32Q20; Secondary 14M25, 32M05.

Partly supported by the Grant-in-Aid for Encouragement of Young Scientists (No. 09740047), The Ministry of Education, Science, Sports and Culture, Japan.
REMARK 1.1. (i) If X is Fano, i.e., the first Chern class $c_1(X)$ of X is positive, then $G_X = \text{Aut}^c(X)$.

(ii) If X is an r-dimensional compact toric manifold, that is, X is an r-dimensional compact irreducible non-singular variety defined over C with an almost-homogeneous algebraic action of an r-dimensional algebraic torus $T_r := (C^*)^r$, then $G_X = \text{Aut}^c(X)$.

By Ric_g and s_g, we denote the Ricci form and the scalar curvature of g, respectively, namely, we put

$$\text{Ric}_g = \sqrt{-1} \sum_{i,j=1}^r R_{i\overline{j}} dz^i \wedge d\overline{z}^j := -\sqrt{-1} \partial \overline{\partial} \log \det(g_{i\overline{j}}),$$

$$s_g := \sum_{i,j=1}^r g^{i\overline{j}} R_{i\overline{j}},$$

where $(g^{i\overline{j}})$ is the inverse matrix of $(g_{i\overline{j}})$. By means of the harmonic integration theory, there exists a real-valued C^∞ function $f \in C^\infty(X)$ such that

$$s_g - r \mu_\eta = \Box_g f_g,$$

where $\Box_g := \sum_{i,j=1}^r g^{i\overline{j}} (\partial^2 / \partial z^i \partial \overline{z}^j)$ is the complex Laplacian for functions on the Kähler manifold (X, g), and $\mu_\eta \in R$ is the constant defined by

$$\mu_\eta := \frac{(c_1(X) \cup \eta^{r-1})[X]}{\eta^r [X]} = \int_X s_g \left(\frac{\omega_g}{2\pi} \right)^r \in R.$$

(1.2)

Bando [2], Calabi [4] and Futaki [9] defined an obstruction to the existence of Kähler metrics with constant scalar curvature as follows:

DEFINITION 1.3 (Bando [2], Calabi [4] and Futaki [9]). A linear functional $F^n_X : H^0(X; \mathcal{O}(T^{1,0}X)) \to C$ defined by

$$F^n_X(V) := \frac{1}{\sqrt{-1}} \int_X (V f_g) \left(\frac{\omega_g}{2\pi} \right)^r, \quad V \in H^0(X; \mathcal{O}(T^{1,0}X)),$$

is called the Bando-Calabi-Futaki character of (X, η).

We now recall the following fundamental facts about the Bando-Calabi-Futaki characters:

FACT 1.4 (Bando [2], Calabi [4] and Futaki [9]). Let X and η be as above. Then we have the following:

(i) F^n_X does not depend on the choice of g satisfying $[\omega_g] = 2\pi \eta$.

(ii) If X admits a Kähler metric g with constant scalar curvature satisfying $[\omega_g] = 2\pi \eta$, then F^n_X vanishes.
(iii) F^u_X is a Lie algebra character of $H^0(X; \mathcal{O}(T^{1,0}X))$, that is,
$$F^u_X|_{[H^0(X; \mathcal{O}(T^{1,0}X)), H^0(X; \mathcal{O}(T^{1,0}X))]} \equiv 0.$$

Remark 1.5. If η is the first Chern class $c_1(X)$ of X, then the Bando-Calabi-Futaki character $F_{c_1}(X)$ coincides with the original Futaki character, which was introduced in [8] as an obstruction to the existence of Einstein-Kähler metrics.

Definition 1.6. Let $\pi_E : E \to X$ be a holomorphic vector bundle of rank k over X. We say that E is (G, ρ)-linearized if G acts on E birationally in such a way that
(i) $\pi_E \circ \gamma = \rho(\gamma) \circ \pi_E$ for any $\gamma \in G$;
(ii) for any $\gamma \in G$ and $p \in X$,
$$\gamma|_{E_p} : E_p \to E_{\rho(\gamma)(p)}$$
is a C-linear map, where $E_p := \pi_E^{-1}(p)$ is the fiber of π_E at $p \in X$.

Furthermore, if G is a subgroup of $\text{Aut}(X)$ and ρ is the inclusion map, then we simply say that E is G-linearized.

In [15], the author proved the following:

Fact 1.7 (Nakagawa [15]). Let X and η be as above. We assume that there exists a holomorphic line bundle L over X such that L is G_X-linearized and $c_1(L) = \eta$, where $c_1(L)$ is the first Chern class of L. Then
$$F^u_X|_{u_X} \equiv 0,$$
where $u_X := \text{Lie}(U_X)$ is the Lie algebra of U_X.

The main purpose of this paper is to generalize this fact to the case of a more general situation, that is, we shall prove the following theorem:

Theorem 1.8. Let X, η, G and ρ be as above. We assume that there exists a holomorphic line bundle L over X such that L is (G, ρ)-linearized and $c_1(L) = \eta$. Then
$$(F^u_X \circ \rho_*)|_u \equiv 0$$
for any unipotent subgroup $U \subseteq G$ with Lie algebra $u := \text{Lie}(U)$.

As an application of this theorem, we shall also prove the following theorem:

Theorem 1.9. Let X be an r-dimensional compact toric manifold. By definition, an r-dimensional algebraic torus $T_r := (\mathbb{C}^*)^r$ acts on X holomorphically; hence the Lie algebra $t_r := \text{Lie}(T_r)$ of T_r is regarded as a Lie subalgebra of $H^0(X; \mathcal{O}(T^{1,0}X))$. If $\eta \in H^2(X; \mathbb{Z})$ is positive, then the following are equivalent, without any assumptions concerning a linearization of the natural action of $\text{Aut}(X)$ on X:
(i) F^u_X vanishes identically on $H^0(X; \mathcal{O}(T^{1,0}X))$.
(ii) F^u_X vanishes on t_r.

Acknowledgments. Part of this paper was written when the author participated in the “Programme on Lie Groups, March–June 1999” at the Institute of Mathematical Research, the University of Hong Kong. He wishes to thank Professor Ngaiming Mok who invited him to
the University of Hong Kong. He also wishes to thank the Department of Mathematics, the University of Hong Kong, for constant assistance all through his stay in Hong Kong.

2. Bando-Calabi-Futaki characters as holomorphic invariants (Proof of Theorem 1.8). Throughout this section, we fix a compact connected r-dimensional complex manifold X, a positive class $\eta \in H^2(X; \mathbb{R})$, a linear algebraic group G (defined over \mathbb{C}) and a homomorphism $\rho: G \rightarrow \text{Aut}(X)$ of algebraic groups. Let $\pi_E: E \rightarrow X$ be a holomorphic vector bundle of rank k over X. We assume that E is (G, ρ)-linearized. Then, for any $V \in \mathfrak{g}$, a holomorphic action (see [3])

$$A^E_V: A^0(E) \rightarrow A^0(E),$$

of V on E is induced, that is, A^E_V satisfies the following properties:

(i) A^E_V is a \mathbb{C}-linear map.

(ii) For all $\psi \in C^\infty(X)_\mathbb{C}$ and $s \in A^0(E)$,

$$A^E_V(\psi s) = ((\rho_\ast V) \psi) s + \psi A^E_V s.$$

(iii) A^E_V commutes with ∂, i.e., $\partial A^E_V = A^E_V \partial$.

Here we denote by $A^p(E)$ the space of E-valued p-forms on X for $p = 0, 1, \ldots, r$.

Example 2.1. $E = T^1,0 X$ is canonically $\text{Aut}(X)$-linearized. In this case, $\Lambda^{T^1,0 X} V$ is the Lie differentiation LV of vector fields with respect to a holomorphic vector field $V \in H^0(X; \mathcal{O}(T^1,0 X))$ on X.

Let h be a Hermitian metric on E and $\nabla^h: A^0(E) \rightarrow A^1(E)$ the Hermitian connection of h (see for instance [12, p. 12]). We define the curvature Θ^h of ∇^h by

$$\Theta^h = \partial(h^{-1} \partial h) \in A^2(\text{End}(E)).$$

where $\text{End}(E)$ is the endomorphism bundle of E over X. For each $V \in \mathfrak{g}$, we put $\mathcal{L}^{(E, h)}_V := \nabla^h - A^E_V \in A^0(\text{End}(E))$. Let $l \in \mathbb{Z}_{\geq 0}$ be a non-negative integer and s a $GL(k, \mathbb{C})$-invariant symmetric polynomial of degree $r + l$ on $\mathfrak{gl}(k, \mathbb{C})$ (see [10, p. 21]). For example, $c^{r+l}_1 := ((\sqrt{-1}/2\pi) tr)^{r+l}$ is a $GL(k, \mathbb{C})$-invariant symmetric polynomial of degree $r + l$ on $\mathfrak{gl}(k, \mathbb{C})$. We now define a map $C^E_{\phi}: \mathfrak{g} \rightarrow \mathbb{C}$ by

$$C^E_{\phi}(V) := \int_X \phi(\mathcal{L}^{(E, h)}_V + \Theta^h), \quad V \in \mathfrak{g}.$$

For this map C^E_{ϕ}, we can prove the following facts:

Fact 2.2 (cf. Futaki and Morita [11]). Let $X, (E, h)$ and ϕ be as above. Then we have the following:

(i) C^E_{ϕ} dose not depend on the choice of a Hermitian metric h on E, i.e., C^E_{ϕ} is a holomorphic invariant of (X, E).

(ii) C^E_{ϕ} is a G-invariant symmetric polynomial of degree l on \mathfrak{g}. In particular, if $l = 1$, then C^E_{ϕ} is a character of the Lie algebra \mathfrak{g}.
(iii) For any \(V \in H^0(X; \mathcal{O}(T^{1,0}X)) \),

\[
F_{X}^{c_1} (V) = - \frac{2\pi}{r+1} c_1^{r+1}_{T^{1,0}X} (V) = - \frac{2\pi}{r+1} c_1^{r+1}_{K_X^{-1}} (V),
\]

where \(T^{1,0}X \) and \(K_X^{-1} := \det T^{1,0}X = \bigwedge^r T^{1,0}X \) are regarded as \(\text{Aut}(X) \)-linearized bundles over \(X \) in terms of the canonical \(\text{Aut}(X) \)-actions on them.

Let \(g' \) be an arbitrary Hermitian metric on \(X \). For \(V \in \mathfrak{g} \), if a point \(p \in X \) is a zero point of \(\rho_* V \in H^0(X; \mathcal{O}(T^{1,0}X)) \), then \(\mathcal{L}_{\rho_* V}^{(T^{1,0}X,g')} \) induces the linear map

\[
\mathcal{L}_{\rho_* V, p}^{(T^{1,0}X,g')} : T^{1,0}_p X \to T^{1,0}_p X.
\]

\(V \in \mathfrak{g} \) is said to be non-degenerate if the following two conditions hold:

(i) The zero set \(\text{Zero}(\rho_* V) \) of \(\rho_* V \) is finite.

(ii) For each zero point \(p \in \text{Zero}(\rho_* V) \) of \(\rho_* V \), the linear map

\[
\mathcal{L}_{\rho_* V, p}^{(T^{1,0}X,g')} : T^{1,0}_p X \to T^{1,0}_p X
\]

is non-singular.

The following localization formula for \(\mathcal{C}_E^\phi \) allows us to calculate explicitly the Bando-Calabi-Futaki character of a compact toric manifold (see Corollary 4.6):

Fact 2.3 (Bott [3]). Let \(X, (E, h) \) and \(\phi \) be as above, and \(V \in \mathfrak{g} \) a non-degenerate element. Then we have

\[
\mathcal{C}_E^\phi (V) = \sum_{p \in \text{Zero}(V)} \frac{\phi (\mathcal{L}_{(E,h), p}^{(T^{1,0}X,g')})}{\sqrt{-1} \det \frac{\mathcal{L}_{\rho_* V, p}^{(T^{1,0}X,g')}}{2\pi}},
\]

where \(g' \) is an arbitrary Hermitian metric on \(X \).

Now, we assume that there exists a holomorphic line bundle \(L \) over \(X \) such that \(L \) is \((G, \rho) \)-linearized and \(c_1(L) = \eta \). Under this assumption, an argument similar to that in [17, Section 6] allows us to prove the following Tian’s formula for the Bando-Calabi-Futaki character (see also [15, Section 3]):

Theorem 2.4 (Tian [17]). Let \(X, \eta, G, \rho \) and \(L \) be as above. Then, for any integer \(\delta \in \mathbb{Z} \) and \(V \in \mathfrak{g} \), we have

\[
F_{X}^{\delta} (\rho_* V) = - \frac{2\pi}{2^r(r+1)!} \sum_{j=0}^{r} (-1)^j \binom{r}{j} c_1^{r+1}_{K_X^{-1} \otimes L^{\delta+r-2j}} (V)
+ 2\pi \left(\delta + \frac{r \mu_\eta}{r+1} \right) c_1^{r+1}_L (V),
\]

where \(L^{\delta+r-2j} := L^{\delta+r-2j} \) is the \((\delta + r - 2j) \)-th tensor power of \(L \). Here we regard \(K_X^{-1} \otimes L^{\delta+r-2j} \), \(j = 0, 1, \ldots, r \), as \((G, \rho) \)-linearized line bundles by the canonical \(\text{Aut}(X) \)-action on \(K_X^{-1} \).
Together with this Tian’s formula, the following fact implies Theorem 1.8 by the same argument as that in [15, Section 4]:

FACT 2.5 (Mabuchi [13]). Let X, G, ρ and L be as above. Then, for any unipotent subgroup U of G, c_L^{r+1} vanishes on the Lie algebra $\mathfrak{u} := \text{Lie}(U)$ of U.

3. Bando-Calabi-Futaki character of compact toric manifolds (Proof of Theorem 1.9)

First, we recall some basic notions and facts concerning toric manifolds (see [16] for more details). Let $\mathfrak{T}_r := (\mathbb{C}^\times)^r$ be an r-dimensional algebraic torus. We put $N := \mathbb{Z}^r$ and $M := \text{Hom}_\mathbb{Z}(N, \mathbb{Z}) \equiv \mathbb{Z}^r$, where we regard elements of N and M as r-dimensional column vectors and row vectors, respectively. Let Σ be a complete non-singular fan in N (see [16] for the definition of a complete non-singular fan) and $\Sigma(i)$ the set of i-dimensional cones in Σ for $i = 0, 1, \ldots, r$. We denote by X_Σ the r-dimensional compact toric manifold associated with Σ. Then \mathfrak{T}_r acts on X_Σ biholomorphically, and X_Σ has an open dense \mathfrak{T}_r-orbit O_Σ isomorphic to \mathfrak{T}_r.

FACT 3.1 (Cox [5]). Let Σ be a complete non-singular fan in N and $d_\Sigma := \# \Sigma(1)$ the number of the one-dimensional cones in Σ. Then:

(i) There exists a $(d_\Sigma - r)$-dimensional algebraic subtorus H_Σ of $(\mathbb{C}^\times)^{d_\Sigma}$ and an H_Σ-invariant open subset W_Σ of \mathbb{C}^{d_Σ} such that H_Σ acts freely on W_Σ and

$$X_\Sigma = W_\Sigma / H_\Sigma.$$

Here the H_Σ-action on \mathbb{C}^{d_Σ} is induced from the canonical $(\mathbb{C}^\times)^{d_\Sigma}$-action on \mathbb{C}^{d_Σ}.

(ii) Let \tilde{G}_Σ be the centralizer of H_Σ in $\text{Aut}(W_\Sigma)$. Then

$$\text{Aut}^0(X_\Sigma) \cong \tilde{G}_\Sigma / H_\Sigma.$$

(iii) \tilde{G}_Σ and $\text{Aut}^0(X_\Sigma)$ are connected linear algebraic groups (defined over \mathbb{C}). Let \tilde{U}_Σ and U_Σ be the unipotent radicals of \tilde{G}_Σ and $\text{Aut}^0(X_\Sigma)$, respectively. Then

$$\rho_\Sigma|_{\tilde{U}_\Sigma} : \tilde{U}_\Sigma \to U_\Sigma$$

is an isomorphism, where $\rho_\Sigma : \tilde{G}_\Sigma \to \text{Aut}^0(X_\Sigma)$ is the natural projection induced by the isomorphism $\text{Aut}^0(X_\Sigma) \cong \tilde{G}_\Sigma / H_\Sigma$. Furthermore, there exists a reductive algebraic subgroup R_Σ of $\text{Aut}^0(X_\Sigma)$ with \mathfrak{T}_r as a maximal algebraic torus such that

$$\text{Aut}^0(X_\Sigma) = R_\Sigma \ltimes U_\Sigma.$$

EXAMPLE 3.2. A typical example of an r-dimensional compact toric manifold is the r-dimensional complex projective space $\mathbb{P}(\mathbb{C})$. If $X_\Sigma = \mathbb{P}(\mathbb{C})$, then we have:

- $d_\Sigma = r + 1$,
- $H_\Sigma = \{(t, t, \ldots, t) \in (\mathbb{C}^\times)^{r+1} ; t \in \mathbb{C}^\times \} \cong \mathbb{C}^\times$,
- $W_\Sigma = \mathbb{C}^{r+1} \setminus \{0\}$,
- $\tilde{G}_\Sigma = GL(r + 1, \mathbb{C})$,
- $\text{Aut}^0(X_\Sigma) = \text{Aut}(X_\Sigma) = \text{PGL}(r + 1, \mathbb{C})$.

To each $v \in \Sigma(1)$, there corresponds a T-invariant Weil divisor D_v on X_Σ. More generally, a map $\alpha: \Sigma(1) \to \mathbb{Z}$ defines a T-invariant Weil divisor $D(\alpha) := -\sum_{v \in \Sigma(1)} \alpha(v) D_v$, and we denote by L_α the T-linearized holomorphic line bundle over X_Σ corresponding to $D(\alpha)$, i.e., $L_\alpha = \mathcal{O}(D(\alpha))$.

Example 3.3. Let Σ be a complete non-singular fan in \mathbb{N} and X_Σ the compact toric manifold associated with Σ. Then the anti-canonical line bundle K^{-1}_X of X_Σ corresponds to the map $\alpha_0: \Sigma(1) \ni v \mapsto -1 \in \mathbb{Z}$, that is, K^{-1}_X corresponds to the T-invariant Weil divisor $\sum_{v \in \Sigma(1)} D_v$.

If L_α is ample, that is, $c_1(L_\alpha) \in H^2(X_\Sigma; \mathbb{Z})$ is positive, then we say that α is ample. Let $\Sigma(1) = \{v_1, v_2, \ldots, v_{d_\Sigma}\}$ and put $\alpha_i := \alpha(v_i) \in \mathbb{Z}$ for $i = 1, 2, \ldots, d_\Sigma$. Then we define a character $\lambda_\alpha: (\mathbb{C}^*)^{d_\Sigma} \to \mathbb{C}^*$ of $(\mathbb{C}^*)^{d_\Sigma}$ by $\lambda_\alpha(s_1, s_2, \ldots, s_{d_\Sigma}) := s_1^{\alpha_1} s_2^{\alpha_2} \cdots s_{d_\Sigma}^{\alpha_{d_\Sigma}}$. H_Σ acts on $W_\Sigma \times \mathbb{C}$ by $k: (z, \xi) \mapsto (k \cdot z, \lambda_\alpha(k)^{-1} \xi)$, where $k \in H_\Sigma, z \in W_\Sigma$ and $\xi \in \mathbb{C}$.

Fact 3.4 (cf. Audin [1, Chapter VI]). The projection $W_\Sigma \to X_\Sigma$ is a principal H_Σ-bundle. Furthermore, the T-linearized holomorphic line bundle L_α over X_Σ is given by $L_\alpha = W_\Sigma \times_{\lambda_\alpha} \mathbb{C} := (W_\Sigma \times \mathbb{C}) / H_\Sigma$.

Proposition 3.5. For α as above, L_α is the $(\tilde{G}_\Sigma, \rho_\Sigma)$-linearized holomorphic line bundle over X_Σ.

Proof. The natural \tilde{G}_Σ-action on W_Σ commutes with the H_Σ-action on W_Σ. Then, by means of Fact 3.4, \tilde{G}_Σ acts on $L_\alpha = W_\Sigma \times_{\lambda_\alpha} \mathbb{C}$ and L_α is $(\tilde{G}_\Sigma, \rho_\Sigma)$-linearized. \square

For any $\eta \in H^2(X_\Sigma; \mathbb{Z})$, in view of [7, Section 3.4], there exists a map $\alpha_\eta: \Sigma(1) \to \mathbb{Z}$ such that $c_1(L_{\alpha_\eta}) = \eta$. Therefore, Theorem 1.8 together with Fact 3.1 (iii) and Proposition 3.5 implies the following theorem:

Theorem 3.6. Let Σ be a complete non-singular fan in \mathbb{N} and $\eta \in H^2(X_\Sigma; \mathbb{Z})$ a positive class. Then the Bando-Calabi-Futaki character $F^\eta_{X_\Sigma}$ of (X_Σ, η) vanishes on the Lie algebra $u_\Sigma := \text{Lie}(U_\Sigma)$ of U_Σ.

Recall that, for a reductive algebraic group R,

$$\text{Lie}(R) = \text{Lie}(\text{Center}(R)) + [\text{Lie}(R), \text{Lie}(R)],$$

and $\text{Lie}(\text{Center}(R)) \subseteq \text{Lie}(T)$ for every maximal algebraic torus T of R, where Center(R) is the center of R. Since R_Σ is reductive, Theorem 3.6 together with Fact 3.1 (iii) and (3.7) immediately implies Theorem 1.9.
4. A combinatorial formula for the Bando-Calabi-Futaki character of compact toric manifolds. In [14], the author established a combinatorial formula for the Futaki character of a toric Fano manifold. In this section, we shall also establish a combinatorial formula for the Bando-Calabi-Futaki character of a compact toric manifold by the same argument as in [14].

Throughout this section, we fix a complete non-singular fan Σ in $N := \mathbb{Z}^r$ and a positive class $\eta \in H^2(X_\Sigma; \mathbb{Z})$. We shall use the same notation as that in Section 3.

We define a basis $\{\tau_i := t_i(\partial/\partial t_i); i = 1, 2, \ldots, r\}$ of the Lie algebra t_r of T_r, where (t^1, t^2, \ldots, t^r) is the standard coordinate for $T_r = (\mathbb{C}^*)^r$. Note that we can regard t_r as a complex Lie subalgebra of $H^0(X_\Sigma; \mathcal{O}(T^1\mathbb{C}^r))$. For each $\sigma \in \Sigma(r)$ and $S \in GL(r, \mathbb{C})$, let

$$a_1(\sigma) = \begin{pmatrix} a_{11}^1(\sigma) \\ a_{21}^1(\sigma) \\ \vdots \\ a_{r1}^1(\sigma) \end{pmatrix}, \ldots, a_r(\sigma) = \begin{pmatrix} a_{1r}^1(\sigma) \\ a_{2r}^1(\sigma) \\ \vdots \\ a_{rr}^1(\sigma) \end{pmatrix} \in \mathbb{N}$$

be the generator of σ. We put

$$A(\sigma) := (a_1(\sigma), a_2(\sigma), \ldots, a_r(\sigma))$$

$$= \begin{pmatrix} a_{11}^1(\sigma) & a_{12}^1(\sigma) & \cdots & a_{1r}^1(\sigma) \\ a_{21}^1(\sigma) & a_{22}^1(\sigma) & \cdots & a_{2r}^1(\sigma) \\ \vdots & \vdots & \ddots & \vdots \\ a_{r1}^1(\sigma) & a_{r2}^1(\sigma) & \cdots & a_{rr}^1(\sigma) \end{pmatrix} \in GL(r, \mathbb{Z})$$

and $Q(S; \sigma) = (q_j^i(S; \sigma)) := A(\sigma)^{-1}S \in GL(r, \mathbb{C})$. A non-singular matrix $S \in GL(r, \mathbb{C})$ is said to be non-degenerate if S satisfies $q_j^i(S; \sigma) \neq 0$ for all $i, j = 1, 2, \ldots, r$, and $\sigma \in \Sigma(r)$.

Example 4.1. For example, a non-singular matrix

$$S_0 := \begin{pmatrix} 1 & 1 & \cdots & 1 \\ \pi & \pi^2 & \cdots & \pi^r \\ \pi^2 & \pi^4 & \cdots & \pi^{2r} \\ \vdots & \vdots & \ddots & \vdots \\ \pi^{r-1} & \pi^{2(r-1)} & \cdots & \pi^{r(r-1)} \end{pmatrix} \in GL(r, \mathbb{C})$$

is non-degenerate.

For $S = (s_j^i) \in GL(r, \mathbb{C})$ and $i = 1, 2, \ldots, r$, we define a holomorphic vector field $V_i(S) := \sum_{j=1}^r s_j^i \tau_j$ on X_Σ. Then $\{V_i(S); i = 1, 2, \ldots, r\}$ is a basis of t_r. For a map $\alpha: \Sigma(1) \to \mathbb{Z}$, we define constants $\beta_i(S; \sigma, \alpha), i = 1, 2, \ldots, r$, by

$$\beta_i(S; \sigma, \alpha) := \sum_{j=1}^r \alpha((a_j(\sigma)))q_j^i(S; \sigma),$$

where $(a_i(\sigma)) \in \Sigma(1)$ is the one-dimensional cone generated by $a_i(\sigma) \in N$. We put $b_i(\sigma, \alpha) := \beta(I_r; \sigma, \alpha)$, where $I_r \in GL(r, \mathbb{C})$ is the identity matrix.
In terms of the notation as above, we can establish the following combinatorial formula for $C^{r+l}_{L_\alpha}(V_i(S))$:

Theorem 4.2. Let X_Σ be an r-dimensional compact toric manifold associated with a complete non-singular fan Σ and $S \in GL(r, \mathbb{C})$ a non-degenerate non-singular matrix. Then we have

$$C^{r+l}_{L_\alpha}(V_i(S)) = \left(\frac{\sqrt{-1}}{2\pi}\right)^l \sum_{\sigma \in \Sigma(r)} \beta_i(S; \sigma, \alpha)^{r+l} \prod_{j=1}^r q_j^i(S; \sigma)$$

for any $\alpha: \Sigma(1) \to \mathbb{Z}$, $l \in \mathbb{Z}_{\geq 0}$ and $i = 1, 2, \ldots, r$, where we regard L_α as a T_r-linearized holomorphic line bundle over X_Σ.

Proof. For each $\sigma \in \Sigma(r)$, there exists a T_r-invariant open subset W_σ of X_Σ such that $W_\sigma \cong \mathbb{C}^r$ and $X_\Sigma = \bigcup_{\sigma \in \Sigma(r)} W_\sigma$. Let (t^1, t^2, \ldots, t^r) and $(z^1(\sigma), z^2(\sigma), \ldots, z^r(\sigma))$ be the coordinate systems on $D_\Sigma \cong T_r = (\mathbb{C}^*)^r$ and $W_\sigma \cong \mathbb{C}^r$, respectively. The following system of identities is the coordinate transformation between these coordinates:

$$t^i = \prod_{j=1}^r z^j(\sigma) \frac{\partial}{\partial z^j(\sigma)}, \quad i = 1, 2, \ldots, r.$$

From these identities, for every $\sigma \in \Sigma(r)$ and $i = 1, 2, \ldots, r$, we have

$$V_i(S) = \sum_{k=1}^r q_k^i(S; \sigma) \frac{\partial}{\partial z^k(\sigma)}$$

on W_σ. In view of this expression of $V_i(S)$ and the non-degeneracy of S, we obtain

$$\text{Zero}(V_i(S)) = \{\text{the origin } o(\sigma) \text{ of } W_\sigma \cong \mathbb{C}^r : \sigma \in \Sigma(r)\}$$

for $i = 1, 2, \ldots, r$. For each $\sigma \in \Sigma(r)$, the T_r-linearized holomorphic line bundle L_α over X_Σ is trivialized on W_σ. In terms of this trivialization, the T_r-action on $L_\alpha|_{W_\sigma} = W_\sigma \times \mathbb{C}$ is given by

$$t: W_\sigma \times \mathbb{C} \ni (z, \xi) \mapsto \left(t^i \cdot z, \prod_{i=1}^r t^i - b_i(\sigma, \alpha) \frac{\partial}{\partial z^i(\sigma)}\right) \in W_\sigma \times \mathbb{C},$$

where $t = (t^1, t^2, \ldots, t^r) \in T_r$ (see [16, p. 69]). Hence, for $\sigma \in \Sigma(r)$ and $i = 1, 2, \ldots, r$, we have

$$L^{(L_\alpha, h)}_{V_i(S), o(\sigma)} = \sum_{j=1}^r b_j(\sigma, \alpha) x_j^i = b_i(S; \sigma, \alpha),$$

where h is an arbitrary Hermitian metric on L_α. Moreover we also have, for $\sigma \in \Sigma(r)$ and $i = 1, 2, \ldots, r$,
with respect to a basis \{((\partial/\partial z^1(\sigma))_{\alpha(\sigma)}), \ldots, ((\partial/\partial z^\ell(\sigma))_{\alpha(\sigma)})\} of $T_{\alpha(\sigma)}^1 X_P$, where g' is an arbitrary Hermitian metric on X_Σ. Together with (4.3) and (4.4), Fact 2.3 immediately implies the theorem.

\[L_{\alpha(\sigma)}^\prime = \begin{pmatrix} q_1^1(S; \sigma) & q_1^2(S; \sigma) & 0 \\ 0 & 0 & 0 \\ \vdots & \vdots & \vdots \\ 0 & 0 & q_r^r(S; \sigma) \end{pmatrix}, \]

As a corollary of this theorem, we obtain the following:

Corollary 4.5. Let X_Σ be an r-dimensional compact toric manifold associated with a complete non-singular fan Σ, $S \in GL(r, \mathbb{C})$ a non-degenerate non-singular matrix, $\alpha : \Sigma(1) \to \mathbb{Z}$, $a = 1, 2, \ldots, k$, and $b_1, b_2, \ldots, b_k \in \mathbb{N}$ with $b_1 + b_2 + \cdots + b_k = r$. Then we have

\[
(c_1(L_{\alpha_1})^{b_1} \cup c_1(L_{\alpha_2})^{b_2} \cup \cdots \cup c_1(L_{\alpha_k})^{b_k})[X_\Sigma] = \sum_{\sigma \in \Sigma(r)} \prod_{a=1}^{k} \beta_i(S; \sigma, \alpha_a)^{b_a} \prod_{j=1}^{r} q_j^i(S; \sigma),
\]

for any $i = 1, 2, \ldots, r$. In particular, for $\alpha : \Sigma(1) \to \mathbb{Z}$ and $i = 1, 2, \ldots, r$, we have

\[
\mu_{c_1(L_\omega)} = \beta_i(S; \sigma, \omega) \sum_{\sigma \in \Sigma(r)} \prod_{j=1}^{r} q_j^i(S; \sigma),
\]
PROOF. Applying Theorem 4.2 to \(C^1_{L_1^1 \otimes L_2^2 \otimes \cdots \otimes L_k^k}(V_i(S)) \), we obtain

\[
\sum_{b_1 + \cdots + b_k = r} \frac{r!}{b_1! \cdots b_k!} \lambda_1^{b_1} \cdots \lambda_k^{b_k} (c_1(L_{a_1})^{b_1} \cup \cdots \cup c_1(L_{a_k})^{b_k})(V_i(S)) \left[X_\Sigma \right]
\]

\[
= \sum_{\sigma \in \Sigma(r)} \left(\sum_{a=1}^k \lambda_a \beta_i(S; \sigma, a) \right)^r \prod_{j=1}^r q_j^i(S; \sigma).
\]

By comparing the coefficients of \(\lambda_1^{b_1} \lambda_2^{b_2} \cdots \lambda_k^{b_k} \) in the equation above, we obtain the formula (4.5.1). The formula (4.5.2) is straightforward from the definition (1.2) of \(\mu_{\eta} \) and the formula (4.5.1).

In view of Theorems 2.4 and 4.2 and Corollary 4.5 combined with the equalities

\[
\sum_{j=0}^r (-1)^j \binom{r}{j} (r - 2j)^k = \begin{cases}
0 & \text{if } k = 0, 1, \ldots, r - 1, r + 1, \\
2^r r! & \text{if } k = r,
\end{cases}
\]

we can prove the following combinatorial formula for the Bando-Calabi-Futaki character of a compact toric manifold:

Corollary 4.6. Let \(X_\Sigma \) be an \(r \)-dimensional compact toric manifold associated with a complete non-singular fan \(\Sigma \) and \(S \in \text{GL}(r, \mathbb{C}) \) a non-degenerate non-singular matrix. If \(\alpha : \Sigma(1) \to \mathbb{Z} \) is ample, then, for \(i = 1, 2, \ldots, r \), we have

\[
\sqrt{-1} F_{X_\Sigma}^{c_1(L_{a_i})}(V_i(S)) = \sum_{\sigma \in \Sigma(r)} \frac{\beta_i(S; \sigma, \alpha)^r \sum_{j=1}^r q_j^i(S; \sigma)}{\prod_{j=1}^r q_j^i(S; \sigma)}
\]

\[
= \frac{r}{r + 1} \left(\sum_{\sigma \in \Sigma(r)} \frac{\beta_i(S; \sigma, \alpha)^{r-1} \sum_{j=1}^r q_j^i(S; \sigma)}{\prod_{j=1}^r q_j^i(S; \sigma)} \right)
\]

\[
- \sum_{\sigma \in \Sigma(r)} \frac{\beta_i(S; \sigma, \alpha)^r \sum_{j=1}^r q_j^i(S; \sigma)}{\prod_{j=1}^r q_j^i(S; \sigma)}
\]

\[
\left(\sum_{\sigma \in \Sigma(r)} \frac{\beta_i(S; \sigma, \alpha)^{r+1} \sum_{j=1}^r q_j^i(S; \sigma)}{\prod_{j=1}^r q_j^i(S; \sigma)} \right).
\]
REMARK 4.7. (i) Let X, α and S be as in Corollary 4.6. Then we have

$$\left(F_{X}(L_{\alpha})(\tau_{1}), F_{X}(L_{\alpha})(\tau_{2}), \ldots, F_{X}(L_{\alpha})(\tau_{r}) \right) = \left(F_{X}(V_{1}(S)), F_{X}(V_{2}(S)), \ldots, F_{X}(V_{r}(S)) \right) S^{-1}.$$

Therefore, in view of Corollary 4.6, we can calculate $F_{X}(L_{\alpha})(\tau_{i})$ for all $i = 1, 2, \ldots, r$.

(ii) Let X, α be as in Corollary 4.6. Then by means of Theorem 1.9, Corollary 4.6 and the identity in (i), we can obtain the entire information about the Bando-Calabi-Futaki character $F_{X}(L_{\alpha})$ of $(X, c_{1}(L_{\alpha}))$.

REFERENCES

MATHEMATICAL INSTITUTE
FACULTY OF SCIENCE
TOHOKU UNIVERSITY
SENDAI 980–8578
JAPAN

E-mail address: nakagawa@math.tohoku.ac.jp