THE ORDER OF PERIODIC ELEMENTS OF TEICHMÜLLER MODULAR GROUPS

EGE FUJIKAWA

(Received May 2, 2003, revised March 10, 2004)

Abstract. We consider a quasiconformal automorphism of a Riemann surface, which fixes the homotopy class of a simple closed geodesic. Under certain conditions on the injectivity radius of the surface and bounds on the dilatation of the map, the automorphism induces a periodic element of the Teichmüller modular group. We may also estimate the order of the period.

1. Introduction. Let R be an arbitrary Riemann surface with possibly infinitely generated fundamental group. An element χ of the Teichmüller modular group $\text{Mod}(R)$ is induced by a quasiconformal automorphism f of R. We would like to determine when the order of χ is finite. When f is a conformal automorphism of R, then the element χ of $\text{Mod}(R)$ induced by f fixes the base point of the Teichmüller space $T(R)$. In [3], we proved that, for a Riemann surface R with non-abelian fundamental group, a conformal automorphism f of R has finite order if and only if f fixes either a simple closed geodesic, a puncture or a point on R. In each case, we obtained a concrete estimate for the order of f in terms of the injectivity radius on R. One of our results is the following. For the definition of the upper bound condition, see the next section.

Theorem 1.1 ([3]). Let R be a hyperbolic Riemann surface with non-abelian fundamental group. Suppose that R satisfies the upper bound condition for a constant $M > 0$ and a connected component R^*_M of R_M. Let f be a conformal automorphism of R such that $f(c) = c$ for a simple closed geodesic c on R with $c \subset R^*_M$ and $l(c) = l > 0$. Then the order n of f satisfies

$$n < (e^M - 1) \cosh(l/2).$$

The purpose of this paper is to extend Theorem 1.1 to a quasiconformal automorphism f. One of the difficulties that arise is that the element $\chi \in \text{Mod}(R)$ induced by f need not have a fixed point on $T(R)$. However, we will show that if the maximal dilatation of f is smaller than some constant, then χ is periodic.

The author would like to express her gratitude to Professor Katsuhiko Matsuzaki for his valuable suggestions.

2. Statement of theorem. Let H be the upper half-plane equipped with the hyperbolic metric $|dz|/\text{Im} z$. Throughout this paper, we assume that a Riemann surface R is hyperbolic. Namely, it is represented as H/Γ for some torsion-free Fuchsian group Γ acting on H.

2000 Mathematics Subject Classification. Primary 30F60; Secondary 30C62.
Furthermore, we also assume that R has a non-abelian fundamental group. The hyperbolic distance on H is denoted by d, and the hyperbolic length of a curve c on R by $l(c)$. For the axis L of a hyperbolic element of the Fuchsian group Γ, we denote by $\pi_{\Gamma}(L)$ the projection of L to H/Γ. When there is no fear of confusion, we denote this simply by $\pi(L)$. Also, for a quasiconformal automorphism f of H, we denote by $\tilde{f}(L)$ the geodesic having the same end points as those of $\tilde{f}(L)$.

We recall the definition of Teichmüller spaces and Teichmüller modular groups. Fix a Riemann surface R. We say that two quasiconformal maps f_1 and f_2 on R are equivalent if $f_2 \circ f_1^{-1}$ is homotopic to a conformal map of $f_1(R)$ onto $f_2(R)$. The reduced Teichmüller space $T(R)$ with the base Riemann surface R is the set of all equivalence classes $[f]$ of quasiconformal maps f on R. The Teichmüller distance d_T on $T(R)$ is defined by $d_T([f_1], [f_2]) = \log K(g)$, where g is an extremal quasiconformal map in the sense that its maximal dilatation $K(g)$ is minimal in the homotopy class of $f_2 \circ f_1^{-1}$. This is a complete metric on $T(R)$. The reduced Teichmüller modular group $\text{Mod}(R)$ of R is a group of the homotopy classes $[h]$ of quasiconformal automorphisms h of R. Each element $[h]$ of $\text{Mod}(R)$ induces an automorphism of $T(R)$ by $[f] \mapsto [f \circ h^{-1}]$, which is an isometry with respect to d_T.

We now make a couple of definitions given in terms of the hyperbolic geometry of Riemann surfaces.

Definition. For a constant $M > 0$, we define R_M to be the set of points $p \in R$ for which there exists a non-trivial simple closed curve c_p passing through p with $l(c_p) < M$. The set R_ε is called the ε-thin part of R if $\varepsilon > 0$ is smaller than the Margulis constant. Furthermore, a connected component of the ε-thin part corresponding to a puncture is called the cusp neighborhood.

Remark. The injectivity radius at a point $p \in R$ is the supremum of radii of embedded hyperbolic discs centered at p. Note that R_M coincides with the set of those points having the injectivity radius less than $M/2$.

Definition. We say that R satisfies the lower bound condition if there exists a constant $\varepsilon > 0$ such that ε-thin part of R consists of only cusp neighborhoods or neighborhoods of geodesics which are homotopic to boundary components. We also say that R satisfies the upper bound condition if there exist a constant $M > 0$ and a connected component R_M^* of R_M such that the homomorphism of $\pi_1(R_M^*)$ to $\pi_1(R)$ induced by the inclusion map of R_M^* into R is surjective.

Remark. The lower and upper bound conditions are quasiconformally invariant notions (see [5, Lemma 8]).

We shall obtain a range of maximal dilatations of quasiconformal automorphisms f inducing periodic elements $\chi \in \text{Mod}(R)$. Moreover, we get a concrete estimate for the order of χ.
Theorem 2.1. Let R be a Riemann surface satisfying the lower bound condition for a constant $\varepsilon > 0$ as well as the upper bound condition for a constant $M > 0$ and a connected component R^s_M of R_M. For a given constant $l > 0$, there exists a constant $K_0 = K_0(\varepsilon, M, l) > 1$ depending only on ε, M, and l that satisfies the following: Let f be a quasiconformal automorphism of R such that $f(c)$ is homotopic to c for a simple closed geodesic c on R with $c \subset R^s_M$ and $l(c) = l$. Suppose $K(f) < K_0$. Then there exists a positive integer $n \leq N_0$ such that f^n is homotopic to the identity. Here

$$N_0 = N_0(M, l) = -\frac{l}{\log(\tanh(D + 13.5))},$$

$$D = D(M, l) = \begin{cases} 2 \arccosh \left(\frac{\sinh(M/2)}{\sinh(l/2)} \right) + M & \text{if } l \leq M, \\ M & \text{if } l \geq M. \end{cases}$$

In particular, when $K(f) = 1$, we have the following:

Theorem 2.2. Let R be a Riemann surface satisfying the upper bound condition for a constant $M > 0$ and a connected component R^s_M of R_M as well as the lower bound condition. Let f be a conformal automorphism of R such that $f(c) = c$ for a simple closed geodesic c on R with $c \subset R^s_M$ and $l(c) = l > 0$. Then the order n of f satisfies

$$n \leq -\frac{l}{\log(\tanh(D/2))},$$

where $D = D(M, l)$ is the same constant as in Theorem 2.1.

Note that for $M \geq \arcsinh(2/\sqrt{3}) = 0.98 \cdots$ and every $l > 0$, we have

$$-\frac{l}{\log(\tanh(M/2))} < (e^M - 1) \cosh(l/2).$$

Here the constant $\arcsinh(2/\sqrt{3})$ is the smallest possible value of M for which R satisfies the upper bound condition (see [6]). Hence when $l \geq M$, the upper bound of the order of f obtained in Theorem 2.2 is smaller than that in Theorem 1.1. However, when $l < M$, the estimate in Theorem 1.1 is still better than that in Theorem 2.2 for all sufficiently small l. In fact, $(e^M - 1) \cosh(l/2)$ converges to $e^M - 1$ as $l \to 0$, while $-l/(\log(\tanh(D/2)))$ diverges to $+\infty$.

In connection with Theorems 2.1 and 2.2, we would like to mention the result about the discreteness of the orbit of a point in the Teichmüller space under the action of a certain subgroup of the Teichmüller modular group.

Proposition 2.3 ([5]). Let R be a Riemann surface satisfying the lower and upper bound conditions. For a simple closed geodesic c on R, let G be a subgroup of $\text{Mod}(R)$ such that $g(c)$ is homotopic to c for every $[g] \in G$. Then for every point $p \in T(R)$, the orbit $G(p)$ of p is a discrete subset in $T(R)$. Furthermore, for any point $p \in T(R)$, there exist only finitely many elements $[g]$ in G that fix p.

3. Proof of theorems. For a proof of these theorems, we first prove some properties on the hyperbolic geometry of Riemann surfaces.

Proposition 3.1. Let \(R = H/\Gamma \) be a Riemann surface satisfying the upper bound condition for a constant \(M > 0 \) and a connected component \(\Gamma_M^* \) of \(R_M \). Suppose that \(L \) is the axis of a hyperbolic element of \(\Gamma \) such that the projection \(\pi(L) \) is a simple closed geodesic \(c \) on \(R \) with \(c \subset \Gamma_M^* \). Suppose also that there exists an axis \(L' \) of a hyperbolic element of \(\Gamma \) such that \(L \cap L' = \emptyset, d(L, L') \leq D \) and \(\pi(L') = \pi(L) \). Here \(D = D(M, l) \) is the same constant as in Theorem 2.1.

Proof. First we assume that \(l > M \). Since \(c \subset \Gamma_M^* \), there exists a non-trivial simple closed curve \(\alpha \) passing through \(p \in c \) with \(l(\alpha) < M \). It follows from the assumption \(l > M \) that \(\alpha \) is not homotopic to \(c \), which implies that there exists an axis \(L' \) \((\neq L)\) such that \(\pi(L') = c \) and \(d(L, L') < M \).

Next we assume that \(l \leq M \). We further assume that there exists an annular neighborhood \(A(c) \) of \(c \) with width \(\omega(c) \), where

\[
\omega(c) = \arccosh \left(\frac{\sinh(M/2)}{\sinh(l/2)} \right).
\]

Then, for any \(q \in \partial A(c) \), the boundary of \(A(c) \), the shortest simple closed curve \(\gamma \) passing through \(q \) and homotopic to \(c \) has length \(M \).

Indeed, we may assume that \(L = \{ iy \mid y > 0 \} \), and \(\tilde{q} = e^{i\theta} \) and \(\tilde{q}' = e^{l+ i\theta} \) are lifts of \(q \) to \(H \). Then, by the equality (7.20.3) in [2], we have

\[
\frac{1}{\sin \theta} = \frac{1}{\cos(\pi/2 - \theta)} = \cosh d(\tilde{q}, L) = \cosh \omega(c) = \frac{\sinh(M/2)}{\sinh(l/2)}.
\]

Thus, by Theorem 7.2.1 in [2], we see that

\[
\sinh \frac{1}{2} d(\tilde{q}, \tilde{q}') = \frac{|\tilde{q} - \tilde{q}'|}{2 \Im \tilde{q} \Im \tilde{q}'}^{1/2} = \frac{e^l - 1}{2e^{l/2} \sin \theta} = \frac{\sinh(l/2)}{\sin \theta} = \sinh \frac{M}{2},
\]

which implies that \(l(\gamma) = d(\tilde{q}, \tilde{q}') = M \).

We can take a point \(q_0 \in \partial A(c) \) such that \(q_0 \in \Gamma_M^* \). Indeed, otherwise, \(\partial A(c) \cap \Gamma_M^* = \emptyset \).

Since \(c \subset \Gamma_M^* \), this means that \(\Gamma_M^* \) is an annular neighborhood of \(c \), contradicting the upper bound condition.

By the definition of \(R_M \), there exists a non-trivial simple closed curve \(\beta \) passing through \(q_0 \) with \(l(\beta) < M \). By the consideration above, we see that the curve \(\beta \) is not homotopic to \(c \). Hence there exists an axis \(L' \) \((\neq L)\) such that \(\pi(L') = c \) and \(d(L, L') < 2 \omega(c) + M \).

Finally, we assume that \(l \leq M \) and that the width of the maximal annular neighborhood \(A(c) \) of \(c \) is less than \(\omega(c) \). Then there exists an axis \(L' \) \((\neq L)\) such that \(\pi(L') = c \) and \(d(L, L') < 2 \omega(c) \).

We now estimate the number of axes satisfying Proposition 3.1.

Definition. For an element \(\gamma \) of a Fuchsian group, we say that two axes \(L_1 \) and \(L_2 \) are \(\gamma \)-equivalent if \(\gamma^n(L_1) = L_2 \) for some \(n \in \mathbb{Z} \).
Proposition 3.2. Let \(R = \mathcal{H}/\Gamma \) be a Riemann surface and \(D_0 > 0 \) a constant. Furthermore, let \(L \) be the axis of a hyperbolic element \(\gamma \in \Gamma \) such that the projection \(\pi(L) \) is a simple closed geodesic \(c \) on \(R \) with \(l(c) = l > 0 \). Let \(S \) be the set of axes \(L' \) of hyperbolic elements of \(\Gamma \) satisfying the following: (i) \(L \cap L' = \emptyset \), (ii) \(d(L, L') \leq D_0 \), (iii) \(\pi(L') = c \) and (iv) there exists an arc \(\alpha \) connecting \(L \) and \(L' \) whose projection to \(R \) has no intersection with \(c \) except at the end points. Then the number of \(\gamma \)-equivalence classes of axes in \(S \) is dominated by

\[
-\frac{l}{\log(\tanh(D_0/2))}.
\]

Proof. We may assume that \(L = \{iy \mid y > 0\} \). We take \(\theta_0 \) \((0 < \theta_0 < \pi/2)\) so that \(\cosh D_0 = (\cos \theta_0)^{-1} \) and set \(\theta = \pi/2 - \theta_0 \). Furthermore, we set

\[
T_+ = \{re^{i\theta} \mid 1 \leq r < e^l\} \quad \text{and} \quad T_- = \{re^{i(\pi/2-\theta)} \mid 1 \leq r < e^l\}.
\]

Then \(d(L, T_+) = D_0 \) and \(d(L, T_-) = D_0 \). To estimate the number of \(\gamma \)-equivalence classes of elements in \(S \), we have only to consider the maximal number \(n \) of disjoint axes \(L' \) that are tangent to \(T_+ \) or \(T_- \).

Let \(C \) be the Euclidean circle on \(C \) that is tangent to the segment \(T_+ \) and has center \(a > 0 \) with radius \(r \). Then \(r = a \sin \theta \), and the circle \(C \) passes through two points,

\[
x_1 = (1 - \sin \theta)a \quad \text{and} \quad x_2 = (1 + \sin \theta)a.
\]

The ratio of these points is given by

\[
s = \frac{x_2}{x_1} = \frac{1 + \sin \theta}{1 - \sin \theta} = \frac{1 + \cos \theta_0}{1 - \cos \theta_0} = \frac{\cosh D_0 + 1}{\cosh D_0 - 1} = \frac{1}{(\tanh(D_0/2))^2}.
\]

Hence it is easy to see that

\[
n \leq 2 \cdot \frac{l}{\log s} = \frac{l}{\log(\tanh(D_0/2))}. \quad \square
\]

The following proposition gives a relationship between the hyperbolic distance of two axes and that of their images under a quasiconformal map.

Proposition 3.3 ([1]). Let \(f \) be a \(K \)-quasiconformal automorphism of \(\mathcal{H} \). Then there exists a constant \(C = C(K) > 0 \) depending only on \(K \) such that, for any two geodesics \(L_1 \) and \(L_2 \) in \(\mathcal{H} \), the inequality

\[
K^{-1} \cdot d(L_1, L_2) - C \leq d(f(L_1)_*, f(L_2)_*) \leq K \cdot d(L_1, L_2) + C
\]

holds. The constant \(C(K) \) satisfies \(C(K) \to 0 \) as \(K \to 1 \), and may be taken to be

\[
(1/2) \arccosh(2^{-(K-1)^2} e^{6(K+1)^2\sqrt{K-1}}).
\]

The following proposition gives a sufficient condition for the maximal dilatations of quasiconformal maps to be bounded away from one.
PROPOSITION 3.4 ([4]). Let $R = H/\Gamma$ be a Riemann surface. Suppose that R satisfies the lower bound condition for a constant $\epsilon > 0$ as well as the upper bound condition for a constant $M > 0$ and a connected component R^*_M of R_M. Let $B > 0$ and $l > 0$ be constants. Then there exists a constant $A_0 = A_0(\epsilon, M, B, l) > 1$ depending only on ϵ, M, B, l and satisfying the following conditions: Given a quasiconformal automorphism f of R, suppose that there exist three disjoint axes L_i ($i = 1, 2, 3$) of hyperbolic elements of Γ such that

1. their projections $\pi(L_i)$ on R are simple closed geodesics c_i ($i = 1, 2, 3$) with $c_i \subset R^*_M$ and $l(c_i) \leq l$,
2. $d(L_1, L_2) \leq B$,
3. $\tilde{f}(L_1)_* = L_1$, $\tilde{f}(L_2)_* = L_2$, $\tilde{f}(L_3)_* \neq L_3$ for a lift \tilde{f} of f to H.

Then $K(f) \geq A_0$.

We now prove our theorems.

PROOF OF THEOREM 2.1. We set $B := D = D(M, l)$ in Proposition 3.4 and let $A_0 = A_0(\epsilon, M, l) > 1$ be a constant depending only on ϵ, M and l obtained in Proposition 3.4. Setting $A = \min(A_0, 2)$, we prove the statement for $K_0 = A^{1/(N_0 + 1)}$. Namely, we show that, if $K(f) < K_0$, then there exists an integer $n \leq N_0$ such that f^n is homotopic to the identity.

Let Γ be a Fuchsian model of R. Furthermore let L_1 be an axis such that $\pi(L_1) = c$ and γ_1 the primitive hyperbolic element of Γ with axis L_1. By applying Proposition 3.1 to L_1, we see that there exists an axis L_2 of a hyperbolic element γ_2 of Γ such that $L_1 \cap L_2 = \emptyset$, $d(L_1, L_2) \leq D$ and $\pi(L_1) = \pi(L_2)$.

Let \tilde{f} be a lift of f to H satisfying $\tilde{f}(L_1)_* = L_1$. Since $K(f) < K_0 = A^{1/(N_0 + 1)}$, we have $K(f^k) < A$ for $k \leq N_0 + 1$. Then, by Proposition 3.3,

$$d(L_1, f^k(L_2)_*) = d(\tilde{f}(L_1)_*, \tilde{f}(L_2)_*) \leq A \cdot d(L_1, L_2) + C(A)$$

for all $k \leq N_0 + 1$.

We consider the set S_0 of all axes L' of hyperbolic elements of Γ satisfying the following conditions: (i) $L_1 \cap L' = \emptyset$, (ii) $d(L_1, L') \leq 2D + 27$, (iii) $\pi(L') = c$ and (iv) there exists an arc α connecting L_1 and L' such that the projection of α to R has no intersection with c except at the end points. We see that the set $S' = \{f^k(L_2)_*\}_{k=1}^{N_0+1}$ is contained in S_0. Indeed, by the proof of Proposition 3.1, the axis L_2 satisfies the property (iv), and since \tilde{f} is a homeomorphism, the axes $f^k(L_2)_*$ satisfy the same property. The other properties (i), (ii), (iii) are also satisfied.

By Proposition 3.2, the number of γ_1-equivalence classes of elements in S_0 is dominated by N_0. Hence there exist at least two elements in S', say $f^{m_1}(L_2)_*$ and $f^{m_2}(L_2)_*$ ($1 \leq m_1 < m_2 \leq N_0 + 1$), that are γ_1-equivalent to each other. Thus there exists $j \in \mathbb{Z}$ such that $\gamma_1^j \circ f^n(L_2)_* = L_2$, where $n = m_2 - m_1$ ($\leq N_0$). With this n, we will prove that f^n is homotopic to the identity. We set $F = \gamma_1^j \circ f^n$, which is a lift of f^n to H.
Suppose to the contrary that f^n is not homotopic to the identity. We set $\chi(\gamma) = F \circ \gamma \circ F^{-1}$ for $\gamma \in \Gamma$. Then there exists $\gamma_3 \in \Gamma$ such that $\chi(\gamma_3) \neq \gamma_3$. Setting $\gamma_i' = \gamma_3 \circ \gamma_i \circ \gamma_3^{-1}$ for $i = 1, 2$, we claim that either $\chi(\gamma_1') \neq \gamma_1'$ or $\chi(\gamma_2') \neq \gamma_2'$ is satisfied. Suppose that both $\chi(\gamma_1') = \gamma_1'$ and $\chi(\gamma_2') = \gamma_2'$ are satisfied. Since $\chi(\gamma_i) = \gamma_i$, we have $\beta \circ \gamma_i \circ \beta^{-1} = \gamma_i$ ($i = 1, 2$), where $\beta = \gamma_3^{-1} \circ \chi(\gamma_3)$. Thus, β fixes all fixed points of γ_1 and γ_2. Since γ_1 and γ_2 are non-commutative, the Möbius transformation β fixes four points and must be the identity. This contradicts that $\chi(\gamma_3) \neq \gamma_3$.

Hence either $F(\gamma_3(L_1)_s) \neq \gamma_3(L_1)$ or $F(\gamma_3(L_2)_s) \neq \gamma_3(L_2)$ is satisfied. Also, we may assume without loss of generality that $F(\gamma_3(L_1)_s) \neq \gamma_3(L_1)$. Since $\pi(\gamma_3(L_1)) = \pi(L_1) = c$, we can apply Proposition 3.4 to the lift F of f^n and to the three axes L_1, L_2 and $\gamma_3(L_1)$. Then we have $K(f^n) \geq A_0$, a contradiction, since we assumed $K(f^n) < A_0$. Hence if $K(f) < A_1/(N_0+1)$, then f^n is homotopic to the identity. \hfill \Box

Proof of Theorem 2.2. In the proof of Theorem 2.1, we can replace the inequality (1) with
\[d(L_1, j^k(L_2)_s) = d(j^k(L_1)_s, j^k(L_2)_s) = d(L_1, L_2) = D. \]
Hence we have only to replace the constant $2D + 27$ with D in Theorem 2.1. \hfill \Box

References