On the Approximation of a Function of two Variables by Polynomials,

by

SATORU TAKENAKA, Osaka.

Prof. Landau's proof of Weierstrass' theorem depends upon the following (1):

If \(F(x) \) is limited and continuous except at a finite number of points in the interval \(0 < x \leq a \leq b < 1 \), then the sequence of polynomials

\[
\int_0^1 F(u) \frac{[1 - (u - x)^n]}{2 \int_0^1 (1 - u^n) \, du}
\]

converges uniformly to \(F(x) \), at every point where \(F(x) \) is continuous, as \(n \) tends to infinity.

And he extends this to the polynomials of many variables.

The result of Landau was extended by Tonelli to a different direction in the case of more than two variables, i.e., he proved that under certain conditions

\[
\int_0^{z_{0.5}} \int_0^{z_{0.5}} F(u, v) \frac{[1 - (u - x)^2 - (v - y)^2]^n \, dv}{4 \int_0^{z_{0.5}} \int_0^{z_{0.5}} [1 - u^2 - v^2]^n \, dv}
\]

is also uniformly convergent to \(F(x, y) \) as \(n \) tends to infinity (2).

The principal object of this paper is to prove that if \(F(x, y) \) is limited and continuous except at a finite number of points in the domain \((0 < x, y < 1) \), the sequence of polynomials

\[
\int_0^1 \int_0^1 F(u, v) \frac{[1 - (u - x)(v - y)^2]^n \, dv}{4 \int_0^1 \int_0^1 [1 - u^2 \cdot v^2]^n \, dv}
\]

converges uniformly to \(F(x, y) \) at every point where it is continuous as \(n \) tends to infinity.

I.

Before dealing with our subject, we shall prove some lemmas. Throughout this paper, we express \([1-u^2 v^2]^n\) by \(W_n(u, v)\).

(I) Firstly let \(a \) and \(b \) be any two fixed numbers such that

\[
0 < a < 1, \quad 0 < b < 1.
\]

Then

\[
\lim_{n \to \infty} \frac{\int_0^1 W_n(b, v) \, dv}{\int_0^1 W_n(a, v) \, dv} = 0,
\]

where \(\varepsilon \) is any fixed number such that \(0 < \varepsilon < 1 \).

For

\[
\int_0^1 W_n(b, v) \, dv < \int_0^1 W_n(b, \varepsilon) \, dv < [1 - b^2 \varepsilon^2]^n
\]

and also

\[
\int_0^1 W_n(a, v) \, dv \geq \int_0^{n^{-\frac{1}{2}}} W_n(a, v) \, dv > \int_0^{n^{-\frac{1}{2}}} W_n(a, n^{-\frac{1}{2}}) \, dv
\]

\[
= n^{-\frac{1}{2}} [1 - a^2/n].
\]

Hence we have the inequality

\[
\frac{\int_0^1 W_n(b, v) \, dv}{\int_0^1 W_n(a, v) \, dv} < n^{\frac{1}{2}} [1 - b^2 \varepsilon^2]^n [1 - a^2/n]^{-n},
\]

from which the theorem follows immediately (1).

(Ia) Especially if \(a = b \), then

\[
(1) \text{ Even when } a \text{ and } b \text{ are variables, the above theorem holds good, if they are independent of } v, \text{ and } b \text{ satisfies the inequalities}
\]

\[
\frac{n b^2}{\log n} \geq \frac{1}{2 \varepsilon^2}
\]

for all values of \(n \) greater than \(n_0 \).

For in this case the last inequality becomes

\[
\frac{\int_0^1 W_n(b, v) \, dv}{\int_0^1 W_n(a, v) \, dv} < n^{\frac{1}{2}} [1 - \frac{G \varepsilon^2}{n \log n}]^n (1 - a^2/n) - n,
\]

and hence

\[
0 \leq \lim_{n \to \infty} \frac{\int_0^1 W_n(b, v) \, dv}{\int_0^1 W_n(a, v) \, dv} \leq \varepsilon a^2 \lim_{n \to \infty} \frac{1}{n} = 0.
\]
Therefore we have

\[\lim_{n \to \infty} \frac{\int_0^1 W_n(a, v) \, dv}{\int_0^1 W_n(a, v) \, dv} = 0. \]

Therefore we have

\[\lim_{n \to \infty} \frac{\int_0^1 W_n(a, v) \, dv}{\int_0^1 W_n(a, v) \, dv} = 1. \]

(Ib) More generally we have

\[\lim_{n \to \infty} \frac{\int_0^1 W_n(b, v) \, dv}{\int_0^1 W_n(a, v) \, dv} = \frac{a}{b}. \]

For in the case \(a > b \), let us put \(bv = au \) in the numerator. Then

\[\frac{\int_0^1 W_n(b, v) \, dv}{\int_0^1 W_n(a, v) \, dv} = \frac{a}{b} \frac{\int_0^1 W_n(a, u) \, du}{\int_0^1 W_n(a, v) \, dv}. \]

Next in the case \(a < b \), putting \(av = bu \) in the denominator, we obtain

\[\frac{\int_0^1 W_n(b, v) \, dv}{\int_0^1 W_n(a, v) \, dv} = \frac{a}{b} \frac{\int_0^1 W_n(b, v) \, dv}{\int_0^1 W_n(b, u) \, du}. \]

(II) Secondly the sequence

\[\lambda_n = \frac{\int_0^1 W_n(a, v) \, dv}{\int_0^1 W_n(a, v) \, dv} \]

is monotonously increasing with \(n \).

To prove this, let

\[B_n = \int_0^1 W_n(a, v) \, dv, \]

\[A_n = \int_0^1 W_n(a, v) \, dv. \]

Then

\[A_n - A_{n+1} = \int_0^1 W_n(a, v) \, dv - \int_0^1 W_{n+1}(a, v) \, dv = \alpha \int_0^1 v^3 W_n(a, v) \, dv. \]

But

\[\frac{d}{dv} [v W_{n+1}(a, v)] = W_{n+1}(a, v) + 2 (n + 1) \alpha^2 v^3 W_n(a, v). \]

Integrating and using the above equations we have

\[(1 - \alpha^2)^{n+1} = A_{n+1} - 2 (n + 1) (A_n - A_{n+1}), \]

or

\[A_n + \frac{(1 - \alpha^2)^{n+1}}{2 (n + 1)} = \frac{(2n + 3)}{2 (n + 1)} \cdot A_{n+1}. \]

Similarly
ON THE APPROXIMATION OF A FUNCTION.

\[B_n + \frac{\varepsilon(1-a^2 \varepsilon^2)^{n+1}}{2(n+1)} = \frac{2n+3}{2(n+1)} \cdot B_{n+1}. \]

Therefore we have

\[B_n + \frac{\varepsilon(1-a^2 \varepsilon^2)^{n+1}}{2(n+1)} = \frac{B_{n+1}}{A_{n+1}}. \]

But since

\[0 < \frac{1-a^2}{1-a^2 \varepsilon^2} < 1, \]

we can take a positive integer \(n_0 \) for which

\[\varepsilon > \left(\frac{1-a^2}{1-a^2 \varepsilon^2} \right)^{n+1}, \quad \text{or} \quad \varepsilon (1-a^2 \varepsilon^2)^{n+1} > (1-a^2)^{n+1}, \quad n \geq n_0. \]

Consequently to deduce \(\lambda_{n+1} \) from \(\lambda_n \) we must add a larger number to the numerator than to the denominator, but \(\lambda_n \) is positive and smaller than unity for all values of \(n \); so that \(\lambda_n \) increases with \(n \) monotonously.

(IIa) The sequence

\[\lambda'_n = \frac{\int_0^\varepsilon W_n(b, v) \, dv}{\int_0^\lambda W_n(a, v) \, dv} \]

is also monotonously increasing with \(n \).

(IIb)

\[\mu_n = (1-\lambda_n) = \frac{\int_0^\varepsilon W_n(a, v) \, dv}{\int_0^\lambda W_n(a, v) \, dv} \]

is a sequence monotonously decreasing with \(n \).

(IIc)

\[\mu'_n = (1-\lambda'_n) = \frac{\int_0^\varepsilon W_n(b, v) \, dv}{\int_0^\lambda W_n(a, v) \, dv} \]

is also a sequence monotonously decreasing with \(n \).

(III) Thirdly we will show that the sequence

\[\frac{\int_0^u \int_0^v W_n(u, v) \, dv}{\int_0^u \int_0^v W_n(u, v) \, dv} \]

converges to zero.

Proceeding as in (I) we can prove the following inequalities
and hence we have

\[\frac{\int_0^1 du \int_0^1 W_n(u, v) \, dv \cdot \int_0^1 dv}{\int_0^1 du \int_0^1 W_n(u, v) \, dv} < n (1 - \delta^2 \varepsilon^2)^n (1 - \eta^2)^n, \]

which proves our theorem.

(IV) Lastly the sequence

\[\frac{\int_0^1 du \int_0^1 W_n(u, v) \, dv}{\int_0^1 du \int_0^1 W_n(u, v) \, dv} \]

converges uniformly to zero as \(n \) tends to infinity.

Let us consider

\[P_n = \frac{\int_0^1 du \int_0^1 W_n(u, v) \, dv}{\int_0^1 du \int_0^1 W_n(u, v) \, dv} = \frac{B'_n}{A'_n}. \]

Then \(P_n \) is a monotonously increasing sequence for sufficiently large values of \(n \). For as in (II)

\[\int_0^1 W_n(u, v) \, dv + \frac{\varepsilon (1 - u^2 \varepsilon^2)^{n+1}}{2(n+1)} = \frac{2n+3}{2(n+1)} \int_0^1 W_{n+1}(u, v) \, dv, \]

\[\int_0^1 W_n(u, v) \, dv + \frac{(1 - u^2)^{n+1}}{2(n+1)} = \frac{2n+3}{2(n+1)} \int_0^1 W_{n+1}(u, v) \, dv. \]

Integrating

\[B'_n + \frac{\varepsilon}{2(n+1)} \int_0^1 W_{n+1}(\varepsilon, u) \, du = \frac{2n+3}{2(n+1)} B'_{n+1}, \]

\[A'_n + \frac{1}{2(n+1)} \int_0^1 W_{n+1}(1, u) \, du = \frac{2n+3}{2(n+1)} A'_{n+1}. \]

But for a sufficiently large \(n_0 \)

\[\frac{\varepsilon}{2(n+1)} \int_0^1 W_n(\varepsilon, u) \, du > \frac{1}{2(n+1)} \int_0^1 W_n(1, u) \, du, \]

and the similar consideration as in (II) shows us that the sequence \(P_n \) increases monotonously with \(n \geq n_0 \).

By the consequence of this result

\[Q_n = \frac{\int_0^1 du \int_0^1 W_n(u, v) \, dv}{\int_0^1 du \int_0^1 W_n(u, v) \, dv} \]
is a sequence monotonously decreasing with \(n \geq n_0 \). As \(Q_n \) is obviously positive, it must converge to a finite limit \(l \), i.e.,

\[
\lim_{n \to \infty} Q_n = l \geq 0.
\]

To prove our theorem, it is sufficient to show that \(l = 0 \).

Suppose \(l \) is not zero; then for a sufficiently large number \(N \) we have

\[
Q_n > l, \quad n \geq N;
\]

hence at least for one value \(u \) of \(u \) in \((0,1)\), it must be

\[
\int_0^1 W_n(u,v) \, dv > l \int_0^1 W_n(u,v) \, dv, \quad n \geq N,
\]

which contradicts the result of (I).

Therefore

\[
l = 0,
\]

i.e.,

\[
\lim_{n \to \infty} \frac{\int_0^1 du \int_0^1 W_n(u,v) \, dv}{\int_0^1 du \int_0^1 W_n(u,v) \, dv} = 0 \quad (1).
\]

(IV) Similarly

\[
\lim_{n \to \infty} \frac{\int_0^1 du \int_0^1 W_n(u,v) \, dv}{\int_0^1 du \int_0^1 W_n(u,v) \, dv} = 0.
\]

Consequently

\[
\lim_{n \to \infty} \frac{\int_0^1 du \int_0^1 W_n(u,v) \, dv}{\int_0^1 du \int_0^1 W_n(u,v) \, dv} = 1.
\]

(1) By the first mean value theorem

\[
Q_n = \frac{\int_0^1 W_n(\theta_n,v) \, dv}{\int_0^1 W_n(\theta_n,v) \, dv}, \quad 0 < \theta_n < 1.
\]

Then it can be proved that \(\theta_n \) is monotonously decreasing with \(n \), and \(\lim_{n \to \infty} \theta_n = 0 \).

But it must be

\[
\lim_{n \to \infty} n \theta_n = \infty.
\]

For if not, however large \(n \) may be, we can take at least one integer \(n \) greater than \(n \) for which

\[
n\theta_n < \theta.
\]

Therefore

\[
\int_0^1 du \int_0^1 W_n(u,v) \, dv = \int_0^1 W_n(\theta_n,v) \, dv > \int_0^1 W_n(\theta(n)^{1/2},v) \, dv > (1 - \theta(n))n;
\]

i.e.,

\[
\lim_{n \to \infty} \int_0^1 du \int_0^1 W_n(u,v) \, dv = 0.
\]

This contradicts the obvious result

\[
\lim_{n \to \infty} \int_0^1 du \int_0^1 W_n(u,v) \, dv = 0.
\]
II.

Theorem. Let \(F(x, y) \) be limited and continuous except at a finite number of points in the domain \(0 \leq x, y \leq 1 \). Then at a point \(x_0, y_0 \) \((0 < a \leq x_0 \leq b < 1, 0 < a' \leq y_0 \leq b' < 1)\) where \(F(x, y) \) is continuous, the sequence of polynomials

\[
F_n(x_0, y_0) = \frac{\int_0^1 \int_0^1 F(x, y) \left[1 - (x-x_0)(y-y_0) \right]^n \, dy}{\int_0^1 \int_0^1 \left[1 - x^3 y^3 \right] \, dy}
\]

converges uniformly to \(F(x_0, y_0) \) as \(n \) tends to infinity.

To prove this, it is sufficient to show that for an arbitrary small positive \(\omega \), we can take \(\nu = \nu(\omega) \) such that

\[
| F_n(x_0, y_0) - F(x_0, y_0) | < \omega \quad \text{for all } n \geq \nu.
\]

Since \(F(x, y) \) is continuous at the point \((x_0, y_0)\), we can take \((x', y')\) for which

\[
| y' - y_0 | \leq \varepsilon, \quad | x' - x_0 | \leq \delta,
\]

and

\[
| F(x', y') - F(x, y) | < \frac{\omega}{2},
\]

where \(\varepsilon \) and \(\delta \) are sufficiently small positive numbers.

Secondly, as \(F(x, y) \) is limited in the domain \(0 \leq x, y \leq 1 \), we can choose a positive constant \(G \) such that

\[
| F(x, y) | < G, \quad 0 \leq x, y \leq 1.
\]

Now let

\[
I(x, n) = \int_0^1 F(x, y) \, W_n(x-x_0, y-y_0) \, dy;
\]

then

\[
I(x, n) = \int_0^{y_0-\varepsilon} F(x, y) \, W_n(x-x_0, y-y_0) \, dy
\]

\[
+ \int_{y_0-\varepsilon}^{y_0+\varepsilon} F(x, y) \, W_n(x-x_0, y-y_0) \, dy
\]

\[
+ \int_{y_0+\varepsilon}^{y_0+\varepsilon} F(x, y) \, W_n(x-x_0, y-y_0) \, dy
\]

\[
= I_1(x) + I_2(x) + I_3(x).
\]

By an easy deduction we can show that
ON THE APPROXIMATION OF A FUNCTION.

\[I_1(x) < G \int_0^1 W_n(x-x_0, v) \, dv. \]

Similarly

\[I_3(x) < G \int_0^1 W_n(x-x_0, v) \, dv. \]

Hence

\[
\int_0^1 I_1(x) \, dx < G \int_0^1 dx \int_0^1 W_n(x-x_0, v) \, dv = G \left[\int_0^{x_0+\delta} dx \int_0^1 W_n(x-x_0, v) \, dv \right. \\
+ \int_{x_0+\delta}^{\infty} dx \int_0^1 W_n(x-x_0, v) \, dv + \int_0^1 dx \int_{x_0+\delta}^1 W_n(x-x_0, v) \, dv \left. \right] \\
= G \left[\int_0^{x_0} \int_0^1 + 2 \int_0^\delta \int_0^1 + \int_{x_0+\delta}^1 \int_0^1 \right],
\]

that is,

\[
\int_0^1 I_1(x) \, dx < 2 G \int_0^1 du \int_0^1 W_n(u, v) \, dv.
\]

Similarly

\[
\int_0^1 I_3(x) \, dx < 2 G \int_0^1 du \int_0^1 W_n(u, v) \, dv.
\]

Next we consider \(I_2(x) \). Integrating with respect to \(x \)

\[
\int_0^1 I_2(x) \, dx \\
= \int_0^1 dx \int_{y_0-\delta}^{y_0+\epsilon} F(x, y) W_n(x-x_0, y-y_0) \, dy \\
= \left[\int_1^{x_0-\delta} dx \int_{y_0-\delta}^{y_0+\epsilon} W_n(x-x_0, y-y_0) \, dy \right. \\
+ \int_{x_0-\delta}^{x_0+\epsilon} dx \int_{y_0-\delta}^{y_0+\epsilon} W_n(x-x_0, y-y_0) \, dy \\
\left. + \int_{x_0+\epsilon}^1 dx \int_{y_0-\delta}^{y_0+\epsilon} W_n(x-x_0, y-y_0) \, dy \right],
\]

\[\times F(x, y) W_n(x-x_0, y-y_0) \, dy = J_1 + J_2 + J_3. \]

As in the case of \(I_1, I_3 \), we obtain

\[J_1 < 2 G \int_0^1 du \int_0^1 W_n(u, v) \, dv, \]

\[J_3 < 2 G \int_0^1 du \int_0^1 W_n(u, v) \, dv. \]

Lastly
\[J = \int_{-\delta}^{+\delta} du \int_{-\varepsilon}^{+\varepsilon} F(x_0 + u, y_0 + v) W_n(u, v) \, dv \]

\[= 4 F(x_0 + u', y_0 + v') \int_{0}^{\delta} du \int_{0}^{\varepsilon} W_n(u, v) \, dv, \quad |u'| < \delta, \quad |v'| < \varepsilon. \]

Therefore

\[\left| \int_{0}^{\delta} I(x) \, dx - 4 F(x_0, y_0) \int_{0}^{\delta} du \int_{0}^{\varepsilon} W_n(u, v) \, dv \right| < 4 \left| F(x_0 + u', y_0 + v') - F(x_0, y_0) \right| \int_{0}^{\delta} du \int_{0}^{\varepsilon} W_n(u, v) \, dv \]

\[+ 4G \left[\int_{0}^{\delta} \int_{0}^{\varepsilon} + \int_{0}^{\delta} \int_{\varepsilon}^{\delta} + \int_{\delta}^{\delta} \int_{0}^{\varepsilon} + \int_{\delta}^{\varepsilon} \int_{0}^{\delta} \right] \]

\[< 2 \omega \int_{0}^{\delta} \int_{0}^{\varepsilon} W_n(u, v) \, du \, dv + 4G \left[\int_{0}^{\delta} \int_{0}^{\varepsilon} + \int_{0}^{\delta} \int_{\varepsilon}^{\delta} + \int_{\delta}^{\delta} \int_{0}^{\varepsilon} + \int_{\delta}^{\varepsilon} \int_{0}^{\delta} \right] W_n(u, v) \, du \, dv \]

In consequence of these results, we obtain

\[\left| \int_{0}^{\delta} \int_{0}^{\varepsilon} F(x, y) \, W_n(x-x_0, y-y_0) \, dy - 4 F(x_0, y_0) \int_{0}^{\delta} du \int_{0}^{\varepsilon} W_n(u, v) \, dv \right| \]

\[< 2 \omega \int_{0}^{\delta} \int_{0}^{\varepsilon} W_n(u, v) \, du \, dv + 4G \left[\int_{0}^{\delta} \int_{0}^{\varepsilon} + \int_{0}^{\delta} \int_{\varepsilon}^{\delta} + \int_{\delta}^{\delta} \int_{0}^{\varepsilon} + \int_{\delta}^{\varepsilon} \int_{0}^{\delta} \right] W_n(u, v) \, du \, dv \]

or

\[\left| F_n(x_0, y_0) - F(x_0, y_0) \right| \]

\[< \frac{\omega}{2} \frac{\int_{0}^{\delta} \int_{0}^{\varepsilon} W_n(u, v) \, du \, dv}{\int_{0}^{\delta} \int_{0}^{\varepsilon} W_n(u, v) \, du \, dv} \]

\[+ G \frac{\int_{0}^{\delta} \int_{0}^{\varepsilon} + \int_{0}^{\delta} \int_{\varepsilon}^{\delta} + \int_{\delta}^{\delta} \int_{0}^{\varepsilon} + \int_{\delta}^{\varepsilon} \int_{0}^{\delta}}{\int_{0}^{\delta} \int_{0}^{\varepsilon} W_n(u, v) \, du \, dv} \]

But by our lemmas

\[0 < \frac{\int_{0}^{\delta} \int_{0}^{\varepsilon} W_n(u, v) \, du \, dv}{\int_{0}^{\delta} \int_{0}^{\varepsilon} W_n(u, v) \, du \, dv} < 1, \]

\[0 < \frac{\int_{0}^{\delta} \int_{0}^{\varepsilon} W_n(u, v) \, du \, dv}{\int_{0}^{\delta} \int_{0}^{\varepsilon} W_n(u, v) \, du \, dv} < \frac{\omega}{4G}, \text{ etc.}, \quad n \geq v(\omega). \]

Thus we have arrived at

\[\left| F_n(x_0, y_0) - F(x_0, y_0) \right| < \omega, \quad n \geq v(\omega), \]

which proves our theorem.
ON THE APPROXIMATION OF A FUNCTION.

III.

In a special case where \(F(x, y) = 1 \), we have

\[
\lim_{n \to \infty} \lambda_n(x_0, y_0) = \lim_{n \to \infty} \frac{\int_0^1 dx \int_0^1 W_n(x-x_0, y-y_0) \, dy}{\int_0^1 du \int_0^1 W_n(u, v) \, dv} = 1 \quad (1) .
\]

Therefore if we put

\[
I_n(x_0, y_0) = \frac{\int_0^1 dx \int_0^1 F(x, y) \, W_n(x-x_0, y-y_0) \, dy}{\int_0^1 dx \int_0^1 W_n(x-x_0, y-y_0) \, dy} \lambda_n(x_0, y_0)
\]

then

\[
\lim_{n \to \infty} I_n(x_0, y_0) = I(x_0, y_0).
\]

In the other words, \(F(x_0, y_0) \) can be approximately expressed by a sequence of rational functions

\[
\int_0^1 dx \int_0^1 F(x, y) \left[1 - (x-x_0)^2 (y-y_0)^2 \right]^n \, dy
\]

\[
\int_0^1 dx \int_0^1 \left[1 - (x-x_0)^2 (y-y_0)^2 \right]^n \, dy
\]

These theorems can be extended to the case of many variables:

(I) If \(F(x_1, x_2, \ldots, x_m) \) be limited and continuous except at a finite number of points in the domain \((0 < x_1, x_2, \ldots, x_n < 1)\), then at every point where \(F(x_1, x_2, \ldots, x_m) \) is continuous the sequence of polynomials

\[
\int_0^1 \cdots \int_0^1 F(u_1, u_2, \ldots, u_m) \left[1 - (u_1-x_1)^2 (u_2-x_2)^2 \cdots (u_m-x_m)^2 \right]^n \, du_1 \, du_2 \cdots du_m
\]

converges uniformly to \(F(x_1, x_2, \ldots, x_m) \) as \(n \) tends to infinity.

(II) Under the similar conditions as above the sequence of rational functions

\[
\int_0^1 \cdots \int_0^1 F(u_1, u_2, \ldots, u_m) \left[1 - (u_1-x_1)^2 (u_2-x_2)^2 \cdots (u_m-x_m)^2 \right]^n \, du_1 \, du_2 \cdots du_m
\]

\[
\int_0^1 \cdots \int_0^1 \left[1 - (u_1-x_1)^2 (u_2-x_2)^2 \cdots (u_m-x_m)^2 \right]^n \, du_1 \, du_2 \cdots du_m
\]

is also uniformly convergent to \(F(x_1, x_2, \ldots, x_m) \) as \(n \) tends to infinity.

Ikeda near Osaka, Oct. 1918.

\(^{(1)}\) It is easy to prove that \(\lambda_n \) decreases to zero monotonously with \(n \geq n_0 \), where \(n_0 \) is a fixed positive integer.