An Extension of the Definitions of Perpendicular and Power,

by

Yuzaburo Sawayama, Tokyō.

If the terms defined in the following lines are adopted it can be proved that a circle or circles in the theorem on circles may be replaced by a conic or homothetic conics.

Definition. The two straight lines parallel or coincident to a diameter and the conjugate chord of a conic respectively are said to be pseudo-perpendicular to each other, and one of them be the pseudo-perpendicular to the other. The point of intersection is said to be the foot of the pseudo-perpendicular.

If a segment of the straight line having the extremities at \(A \) and \(B \) is bisected by a straight line \(\chi \) pseudo-perpendicular to it, the points \(A \) and \(B \) are said to be pseudo-symmetrical with respect to the straight line \(\chi \), and the straight line \(\chi \) is called the axis of pseudo-symmetry. The definition of a pseudo-symmetrical figure may be inferred from that of an ordinary symmetrical figure.

Two straight lines are said to be pseudo-antiparallel with respect to a straight line parallel or coinciding to the axis of pseudo-symmetry. Especially if the two straight lines are parallel to each other the common pseudo-perpendicular may be considered to be parallel to the axis of pseudo-symmetry. A conic described by the extremity of a radius vector from its centre sweeping always in the same sense is said to be an oriented conic. The definition of the contact of two oriented conics or that of an oriented straight line with an oriented conic may be inferred from the definition of the contact of two oriented circles or that of an oriented straight line with an oriented circle.

The straight line which passes through the centre of an oriented conic homothetic to the oriented conic under consideration and touching the two oriented straight lines, and also passes through the point of intersection, is called the pseudo-bisector of the angle between the oriented straight lines.

Let \(l \) be a straight line making an angle \(\alpha \) with the directrix of a conic \(S \). The excess of the square of the distance from \(P \) to
DEFINITIONS OF PERPENDICULAR AND POWER.

157

The focus of a point having an equal power in the direction of the same line with respect to two homothetic conics is called the radical axis(2) of the conics.

If A, B are on a straight line passing through P, and $PA \cdot PB$ is equal to $\frac{\mu}{1 - e^2 \sin^2 \theta}$, where θ is the angle which the straight line makes with the directrix, then A and B are inverses(3) to each other, P the centre and μ the constant of inversion.

The definition of the figures inverse to each other may be inferred from that of the ordinary inverse figures. As an example of the use of the terminology given above the proof of a relation which may be regarded as an extension of Steiner's theorem is given without making use of imaginary transformations, although it can be reached easier by the use of imaginaries. Before giving the proof of the theorem the definitions of a few terms and a lemma are added here.

Definition. The point of cointersection of the three pseudo-perpendiculars to the opposite sides from the vortices of a triangle is said to be the pseudo-orthocentre. Of the central conics touching the three sides of a triangle ABC, one whose centre is within the part common to any two angles, for example, B and C, is called the inscribed conic. One whose centre is within the part common to the adjacent and supplement angles to B and C is called the escribed conic opposite to the angle A.

Lemma. If a quadrangle having four points for the vertices, the first one being on the side passing through one of two vertices

(1) If the straight line l intersects the conic S in two real points A and B, the power of the point P in the direction of the line l is $PA \cdot PB$.

(2) The radical axis is a straight line.

(3) This is a modification of a definition given in my paper, Inversion with respect to a conic, Tôhoku Mathematical Journal, Vol. 6, p. 166. Take P as the origin of rectangular coordinates whose x-axis is the straight line perpendicular to the directrix of the conic. Let the coordinates of two points inverse to each other be $x'y'$ and $x''y''$, then the relations between these coordinates are:

$$x'' = \frac{\mu x'}{(1 - e^2)x'^2 + y'^2}, \quad y'' = \frac{\mu y'}{(1 - e^2)x'^2 + y'^2}.$$
of the original quadrangle inscribed in a conic, the second being on
the other side passing through the other vertex, and the third and the
fourth being the two remaining vertices them-
selves, can be inscribed in a second conic which
is homothetic to the original one, the straight line
passing through a pair of the new points is parallel
to the side of the original quadrangle containing
the vertices first referred to.

In the case in which the original conic is a
hyperbola the second conic may be homothetic to
the conjugate hyperbola, or a set of two straight
lines parallel to the asymptotes of the original conic. In the case in
which the original conic is a parabola the second conic may be a set
of two straight lines parallel to the axis of the parabola.

The converse of the lemma is also true.

Dem. Take the points E and F each on the pair of the sides
BC and AD of the quadrangle ABCD inscribed in a conic. Let the
quadrangle ABEF be inscribed in a conic homothetic to the conic
ABCD, then the lines EF and CD are parallel to each other.

Firstly, if a pair of the opposite sides, BC and AD, are not
parallel to one another and K is the point of intersection of the
sides, then by a property of homothetic conics

\[
\frac{KA \cdot KD}{KB \cdot KC} = \frac{KA \cdot KE}{KB \cdot KE'}, \quad \frac{KD}{KC} = \frac{KF}{KE'}
\]

Hence EF is parallel to CD.

Secondly, if BC and AD are parallel to one another, then by a
property of conic, AB and CD are pseudo-antiparallel with respect
to a diameter of a conic ABCD having BC and AD as conjugate
chords.

AB and EF are pseudo-antiparallel with respect to a diameter
of the conic ABEF having BE and AF as conjugate chords. More-
over, by a property of homothetic conics these two diameters are
parallel to one another. Therefore each of CD and EF is pseudo-
antiparallel to the same line AB with respect to a straight line, and
hence they are parallel to one another.

In the case in which the conic ABCD is a hyperbola, ABEF
may be homothetic to the conjugate hyperbola of ABCD, or a set of
two straight lines AE and BF, each parallel to the asymptotes of
the hyperbola ABCD.
In the case in which the conic $ABCD$ is a parabola, $ABEF$ may be a set of two straight lines AE and BF, each parallel or coinciding to the axis of the parabola. Conversely, if EF and CD are parallel to one another the quadrangle $ABEF$ can be inscribed in a conic homothetic to the conic $ABCD$.

In the case in which the conic $ABCD$ is a hyperbola, if only one or all of the sides of the triangle ABE intersect different branches of the former hyperbola $ABCD$, the latter hyperbola $ABEF$ will be homothetic to the hyperbola conjugate to the former hyperbola. There the case may occur in which $ABEF$ is a set of two straight lines parallel to the asymptotes of the former hyperbola. If $ABCD$ is a parabola, also the case may occur, in which $ABEF$ is a set of two straight lines AE and BF parallel or coinciding to the axis of the parabola.

Dem. The demonstration of the converse of this lemma is not given here.

Corollary. Let $ABCD$ be a quadrangle inscribed in a conic, and KAB be a triangle having BC and AD as sides, and AB as the base. The tangent at K to a conic circumscribed to the triangle KAB, and homothetic to the original conic, is parallel to the remaining side CD of the quadrangle. If $ABCD$ is a hyperbola C and D must lie on the same branch of it.

Steiner's theorems(1).

Theorem 1. The conics circumscribed to each of the four triangles formed by the four straight lines taken three by three, whereof neither two are parallel nor any three concurrent, pass the same point P.

Dem. Let AB, BC, CD and DA be the four lines; E be the point of intersection of the first and the third line, and F be that of the second and the fourth line. Call the triangles, DFC, AED,the first, second,triangle. Also call the conics circumscribed to these triangles the first, second,....conics. Let D and P be the points of intersections of the first and second conics and draw four lines PA, PB, PD and PF.

(1) The conics stated in Steiner's theorems other than the first of them are all central conics. Two or more conics stated there are considered to be homothetic. When the conic is a hyperbola, the hyperbola homothetic to conjugate hyperbola or a set of two straight lines parallel or coincident to the asymptotes is sometimes to be used instead of the homothetic conic. When the conic is a parabola a set of two straight lines parallel or coincident to the axis of it is sometimes to be used instead of the homothetic conic.
Y. SAWAYAMA:

Draw a straight line passing through E and parallel to BC, and let it intersect PF at G. Then, since EG is parallel to CF, one of the sides of a quadrangle $CFPD$ inscribed in the first conic, it is known by the converse of the lemma that the quadrangle $EGPD$ can be inscribed in a conic, or in other words, the second conic AED, that is, PED passes G. Next, since BF is parallel to EG, one of the sides of a quadrangle $Egap$ inscribed in the second conic, the quadrangle $BFAP$ can be inscribed in a conic, or in other words, the third conic BFA also passes through P.

By the same reason the fourth conic CEB also passes through P.

Remarks on the special cases in the above demonstration are given below:—In the case in which the first conic is a hyperbola, if the first straight line AB which is not one of the sides of the first triangle is parallel or coincides to one of the asymptotes of the hyperbola, the set of this side of the second triangle and the straight line passing through the vertex D opposite to the side and parallel or coinciding to the other asymptote may be taken instead of the second conic. In the case in which the first conic is a parabola, if the first straight line is parallel or coincides to the axis of it, the set of this straight line and the line passing through D parallel or coinciding to the axis of the parabola may be taken instead of the second conic. The same is true for the third and fourth conics. In these special cases, since the first line is in the part common to the second, third and fourth conics the point of intersection of this line and the first conic is the point common to the four conics.

Theorem 2. The centres of these four conics and $P(1)$ are on a same conic.

Dem. Let the centres of the first, second, third and fourth conics be O_1, O_2, O_3 and O_4 and let P_1, P_2, P_3 and P_4 be the diametrically opposite points in these conics to P. Join A to P_1, P_2, P_3 and

(1) The alphabets used in the present paper have the same significations, except in the part from the beginning to Theorem 1, excluding the theorem itself.
P. Then, since two lines P_2A and P_3A are pseudo-perpendicular to the common chord PA of the second and third conics, they are in the same straight line. Similarly, the straight line P_3P_1 passes through F and the line P_1P_2 through D. By applying Theorem 1 to the four lines, that is, the three sides of the triangle $P_1P_2P_3$ and the straight line DF, it is seen that a conic circumscribed to the triangle $P_1P_2P_3$, the first conic DFP_1 and the second conic ADP_2 intersect at the same point P. Since P_1, P_2, P_3 and P are all on the same conic, P and the middle points O_1, O_2 and O_3 of the segments PP_1, PP_2 and PP_3 are also on the same conic.

In the other words O_1 is on the conic PO_2O_3. Similarly O_4 is also on the conic PO_2O_3.

Alternative demonstration. Since Theorem 3 can be demonstrated independently of Theorem 2, the demonstration of the second theorem may be given basing on the third theorem. Inverse the whole figure with respect to P. Then the four original straight lines become four conics passing through P, and each of the four original conics becomes a straight line. Any three of the original conics, for example, the first, second and third conics pass the three points two by two, at which the fourth line intersects the other three lines. The conic circumscribed to a triangle formed by the inverse figures of the three conics is the inverse of the fourth line, therefore passes P.

The inverses of the points diametrically opposite to P in these conics are the feet of the pseudo-perpendiculars from P to the straight lines, the inverse figures of the conics. Since, the feet of these pseudo-perpendiculars lie, by Theorem 3, on a straight line, the original points lie on a same conic.

Theorem 3. The feet of the pseudo-perpendiculars on these four straight lines from P are on the same line l.

Dem. Let L_1, L_2, L_3 and L_4 be the feet of the pseudo-perpendiculars from P on the straight lines AB, BC or FC, CD, DA or DF.
Then since PL_2 and PL_3 are pseudo-perpendicular to FC and CD respectively, L_2 and L_3 are on the conic on PC as diameter. Similarly L_2 and L_4 are on the conic on PF as diameter. Now let L_4' be the point of intersection of L_2L_3 and DF, then the three conics DEC, L_2L_3C and $L_2L_4'F$ meet at P by Theorem 1. Since the last conic $L_2L_4'F$ and the conic on PF as diameter have three points L_2, F and P in common, they have the same figure, therefore L_4 and L_4' coincide. In other words L_4 is on the line L_2L_3. Similarly L_1 is also on the line L_2L_3.

Theorem 4. The pseudo-orthocentres of these triangles lie on the straight line l'.

Dem. The demonstration of this theorem is given in that of Theorem 5.

Theorem 5. The straight lines l and l' are parallel and l passes through the middle point of the pseudo-perpendicular on l' from P.

Dem. Let H_1 and H_2, etc. be the pseudo-orthocentres of the triangles DFC and AED, etc. respectively. Let D and K be the points of intersection of the pseudo-perpendicular from the vertex D of the triangle DFC on the opposite side FC with the circumscribed conic of the triangle. First will be given a proof that H_1 and K is pseudo-symmetrical with respect to FC.

Let D' be the diametrically opposite point of D in the conic DFC. Join D' to H_1, F, C and K. Then FH_1 and $D'C$ are pseudo-perpendicular to CD, and therefore are parallel to one another. CH_1 and $D'F$ are also parallel to each other. Hence $H_1FD'C$ is a (1) In the special case in which DK passes through one of the extremities of the line segment FC or the middle point of it some of procedures in the demonstration become unnecessary.
DEFINITIONS OF PERPENDICULAR AND POWER.

parallelogram, and the diagonals H_1D' and FC bisect each other. Also FC and $D'K$ are pseudo-perpendicular to DK, and therefore they are parallel to one another. Since FC is parallel to the base $D'K$ passing through the middle point of the side H_1D' of the triangle $H_1D'K$ it passes through the middle point of the remaining side H_1K. Hence H_1 and K are pseudo-symmetrical with respect to FC.

Now let Q be the point of pseudo-symmetry of P with respect to FC. As it is just proved, K and H_1 are pseudo-symmetrical with respect to FC. Hence PK and QH_1 are pseudo-antiparallel with respect to FC.

Let P and P' be the intersecting points of PQ with the conic DFC. The diameter having the parallel chords PP' and KD as conjugate chords is the axis of pseudo-symmetry of PK and $P'D$. Since this diameter is parallel or coincides to the line FC, the two lines PK and $P'D$ are pseudo-antiparallel with respect to FC. Thus two lines QH_1 and $P'D$ are pseudo-antiparallel to PK with respect to the same line FC, hence they are parallel to each other. As shown in the demonstration of Theorem 3 the quadrangle CPL_2L_3 is inscribed in a conic. This quadrangle and the quadrangle $CPP'D$ inscribed in the conic PCD have two vertices C and P in common, and the sides CL_3 and PL_2 of the former quadrangle, which pass through the vertices also pass through the remaining vertices D and P' of the latter quadrangle. Hence, by the lemma, the line L_2L_3, that is, l is parallel or coincides to $P'D$; therefore l is parallel to QH_1 and since L_2 is the middle point of the segment PQ, l passes through the middle point of the segment PH_1. Similarly for H_2, H_3 and H_4. Therefore H_1, H_2, etc. lie all on the line l' parallel to l, and l passing through the middle point of the pseudo-perpendicular on l' from P.

Theorem 6. The middle points of the three diagonals of a complete quadrilateral formed by the four lines lie on the same line l''.

Dem. The proof of this theorem is given in that of Theorem 7.

Theorem 7. The line l'' is the pseudo-perpendicular common to both l and l'.

Dem. Let X, Y and Z be the middle points of the diagonals AC, BD and EF of a complete quadrilateral $ABCDEF$. Again let D', F' and C' be the feet of the
pseudo-perpendicular from the vertices D, F and C on the opposite sides of a triangle DFC. Then, since the conic on BD as diameter passes through D' the power of H_1 in the direction of DD' with respect to the conic is $H_1D\cdot H_1D'$. Similarly the power of H_1 in the direction of FF' with respect to the conic on EF as diameter is $H_1F\cdot H_1F'$. On the other hand the conic on DF as diameter passes through the four points D, D', F and F'.

Now let θ be the angle which the straight line DD' makes with the directrix of the conic BDD'. Let σ_1 be the power corresponding to an angle α of the point H_1 with respect to the conic, σ that with respect to a new conic DFD', then each of $\frac{\sigma_1}{H_1D\cdot H_1D'}$ and $\frac{\sigma}{H_1D\cdot H_1D'}$ equals $\frac{1-e^2\sin^2\theta}{1-e^2\sin^2\alpha}$. Hence σ_1 is equal to σ. Similarly the power corresponding to α of H_1 with respect to the conic EFF' is also equal to σ. Therefore, the powers of H_1 in the direction of the same lines with respect to the conics BDD' and EFF' are equal. Similarly for the conics EFF' and ACC'. Hence H_1 is a point common to any two of the radical axes of the three conics. The points H_2, H_3 and H_4 have the same properties. Thus the radical axes of any two of the three conics have two or more points in common. Hence they are a coincident line. Therefore the three centres X, Y and Z lie on a straight line, and this line is pseudo-perpendicular to the line l' on which the points H_1 and H_2, etc. lie.

Theorem 8. The sixteen centres of the conics inscribed and escribed to the four triangles lie four by four on a conic, giving rise to eight new conics. In the case in which the conics are hyperbolas the original four lines do not intersect different branches of the conic under consideration.
DEFINITIONS OF PERPENDICULAR AND FOWER.

Dem. Giving the sense to each of the four lines a complete quadrilateral is obtained. Call this the basal complete quadrilateral. Let I_1, I_2, I_3, and I_4 be the oriented conics touching the three sides of the first, second, third and fourth triangles of the complete quadrilateral, and denote their centres by the same notations. Again let Y and Z be the points of contact of the oriented conic I_1 touching the third and fourth lines, CD and DF, and let Y' and Z' be those of the oriented conic I_2 touching the two lines mentioned above. Denote the point at which the first conic I_1 touches the second line FC by X, and that at which the second conic I_2 touches the first line AE by X'. Then these two conics are homothetic, the point D of intersection of the third and fourth lines being the centre, and Y being the corresponding point to Y' and Z to Z'. Let X_1 be the corresponding point of X', and U and U_1 be the diametrically opposite points of X and X_1 in the conic XYZ. Join U and U_1 to Y and Z, and draw a straight line passing through U, parallel or coinciding to I_1I_2. Denote the point of intersection of this straight line and ZU_1 by V. Draw a straight line passing through V, parallel to U_1Y, intersecting with UY at W. Then UZ and I_1I_2 are each a pseudo-perpendicular to XZ, hence are parallel to each other. Similarly YU and I_3I_4 are parallel to each other.

ZU_1 and I_3I_4 which are pseudo-perpendicular to the parallel lines X_1Z and $X'Z'$ are parallel to each other. Similarly U_1Y and I_2I_4 are parallel to each other, therefore WV is parallel to I_1I_2. Hence the two quadrangles I_1U_1VW and $UZVW$ are similar to each other.

Since the side VW of the quadrangle $UZVW$ is parallel to the side U_1Y of the quadrangle UZU_1Y inscribed in the conic XYZ, the quadrangle $UZVW$ can by the converse of the lemma be inscribed in a conic. So also the quadrangle $I_1I_2I_3I_4$ can be inscribed in a conic.

Now by changing the sense of the sides (*) of the basal complete quadrilateral one by one are got four complete quadrilaterals, from each of which are obtained the conics as $I_1I_2I_3I_4$. Call these the conics of the second group. Next, by changing one by one the sense of the side of one of the four complete quadrilaterals are obtained four new complete quadrilaterals, one of which being the basal complete quadrilateral. From these complete quadrilaterals are got the conics as $I_1I_2I_3I_4$, which are called the conics of the first group. Thus there are eight conics, both groups taken together.

(* Of course, without changing the positions of the sides.)
Some remarks are given below:

Remark 1. The conics of the first group are got from the complete quadrilaterals got by changing one by one the sense of the sides of any one of the four complete quadrilaterals which are got by changing one by one the sense of the sides of the basal complete quadrilateral. For instance consider the two complete quadrilaterals got by changing the sense of the first and second sides of the basal complete quadrilateral, and form eight complete quadrilaterals by changing the sense of sides. Denote the first, second, sides of the basal complete quadrilateral by $l_1, l_2,$ and the sides whose sense is changed by $l_1', l_2',$. From the first of the two complete quadrilaterals $l_1l_2l_3l_4; l_1'l_2'l_3'l_4; l_1l_2l_3l_4'; l_1'l_2l_3l_4'$ are obtained. From the second are got $l_1'l_2'l_3l_4; l_1l_2l_3l_4; l_1l_2'l_3'l_4; l_1l_2'l_3l_4'$. The two complete quadrilaterals $l_1l_2l_3l_4$ and $l_1'l_2'l_3l_4$ are contained in both groups. Moreover, the remaining complete quadrilaterals $l_1'l_2l_3l_4$ and $l_1l_2'l_3l_4'$ of one group are got by changing the sense of all the sides of the remaining complete quadrilaterals, $l_1l_2'l_3l_4$ and $l_1'l_2l_3l_4'$ of the other group, and vice versa. The angles between two oriented lines and the angles which these lines with sense reversed make with each other have a common pseudo-bisector.

Remark 2. Just as the conics of the first group are obtained from those of the second group, the conics of the second group are got from those of the first group. Because changing the sense of all the sides of complete quadrilaterals got from changing the sense of the three sides of the basal complete quadrilateral is the same as changing the sense of one side of the latter complete quadrilateral.

Theorem 9. The eight new conics are grouped into two groups, the four conics of one of the groups cut those of the other group pseudo-perpendicularly. The centres of the conics of these groups lie on the two lines pseudo-perpendicular to each other.

Dem. Consider one of the conics of the first group and any one of the conics of the second group. For instance, let the former one be the conic $I_1I_2I_3I_4$ got from the basal complete quadrilateral, and let the latter be a conic as the conic $I_1'I_2'I_3'I_4$, formed by changing the sense of the first side of the basal complete quadrilateral, then I_1 is the first conic common to both the new and basal complete quadrilaterals. Let I'_1 and I'_2 be the centres of the second and third conics of the new complete quadrilateral.

Again let O_1, O_2 and O_3 be the centres of the conics circumscribing
the three triangles $I_1I_2I_3$, $I_1'I_2'I_3$ and AI_2I_2' of the four triangles formed by three by three of the four lines, that is, the line I_3I_3' and sides of the triangle $I_1I_2I_3$. Denote the common point of these conics by p, and the diametrically opposite points in the three cones to p by p_1, p_2 and p_3. Draw the tangents pt and pt' at p to the conics $I_1I_2I_3$ and $I_1'I_2'I_3'$ respectively. Then as shown in the demonstration of Theorem 2 each of the sets p_2, p_3, I_2'; p_3, p_1, I_2; p_1, p_3, I_1 lie on a straight line. Hence the four points p_1, p_2, p_3 and p lie on a same conic.

Since the two lines AI_2 and AI_2' are pseudo-perpendicular to each other, I_2I_2' is a diameter of the conic $I_2Ap_3I_3'$. Hence the supplementary chords p_3I_2 and p_3I_2' of this conic are pseudo-perpendicular. Since the two lines p_3p_1 (or p_3I_3) and p_3p_2 (or p_3I_2') are a pair of the supplementary chords of the conic pp_3p_3p, the line p_3p_2 is a diameter of the conic, a pair of the supplementary chords pp and pp_2 are pseudo-perpendicular. These two chords are diameters of the conics O_1 and O_2; therefore the tangents pt and pt' pseudo-perpendicular to the chords are also pseudo-perpendicular to each other.
Similarly each of the other three conics of the first group intersects each of the conics of the second group pseudo-perpendicularly. Thus the conics of one group cut those of the other group pseudo-perpendicularly, and therefore the conics of each group are coaxal. The centres of the conics of one group lie on the radical axis of those of the other group.

Theorem 10. The two lines referred to in Theorem 9 intersects at the point P referred to in Theorem 1.

As the demonstration of this theorem is very tedious is not given here.