ON A CONJECTURE OF BERBERIAN

TEISHIRÔ SAITO AND TAKASHI YOSHINO

(Received February 2, 1965)

1. In [1], S. K. Berberian conjectured that the closure of the numerical range of a hyponormal operator coincides with the convex hull of its spectrum. The purpose of this note is to give an affirmative answer to his conjecture.

Throughout this paper, operator means a bounded linear operator on a Hilbert space. The spectrum of an operator T is denoted by $\sigma(T)$, and its convex hull is denoted by $\sum(T)$. The numerical range of an operator T, denoted by $W(T)$, is the set $W(T) = \{(Tx, x) : \|x\| = 1\}$. We write $\overline{W(T)}$ for the closure of $W(T)$. An operator T is called normaloid if $\|T\| = \sup \{ |\lambda| : \lambda \in W(T) \}$. For a compact convex subset X of the plane, a point $\lambda \in X$ is bare if there is a circle through λ such that no points of X lie outside this circle. A closed subset X of the plane is a spectral set for an operator T if $\lambda(\sigma(T)) \leq \sup \{ |u(z)| : z \in X \}$ for every rational function $u(z)$ having no poles in X.

2. In this section, we shall prove the following theorem.

Theorem. Let T be an operator such that $T - \lambda I$ is normaloid for every complex number λ, then we have $\overline{W(T)} = \sum(T)$.

A key of our proof is the following lemma.

Lemma 1. Let T be an operator and $X \in W(T)$ a bare point of $W(T)$, then there exists a complex number λ_0 satisfying $|\lambda - \lambda_0| = \sup \{ |\mu - \lambda_0| : \mu \in W(T) \}$.

Proof. By the definition of bare point, there is a circle through λ such that no points of $W(T)$ lie outside this circle. The center λ_0 of this circle satisfies our requirement.

For convenience we state the following known result as a lemma ([4: Corollary to Theorem 4]).

Lemma 2. For an operator T, $\lambda \in \overline{W(T)}$ and $|\lambda| = \|T\|$ imply $\lambda \in \sigma(T)$.

PROOF OF THEOREM. It is sufficient to show that each bare point of \(W(T) \) belongs to \(\sigma(T) \) ([4: Lemma 3]). Let \(\lambda \) be a bare point of \(W(T) \), there is a \(\lambda_0 \) satisfying \(|\lambda - \lambda_0| = \sup \{ |\mu - \lambda_0| : \mu \in W(T) \} \) by Lemma 1. Thus, by the hypothesis on \(T \) and the fact \(W(T) - \lambda_0 = W(T - \lambda_0 I) \), we have \(\|T - \lambda_0 I\| = |\lambda - \lambda_0| \). Since \(\lambda - \lambda_0 \in W(T - \lambda_0 I), \lambda - \lambda_0 \in \sigma(T - \lambda_0 I) \) by Lemma 2 and so we have \(\lambda \in \sigma(T) \). Hence the proof is completed.

As a corollary, Berberian's conjecture is solved affirmatively.

COROLLARY 1. For a hyponormal operator \(T \), \(W(T) = \sum(T) \).

PROOF. If \(T \) is hyponormal, i.e. \(TT^* \leq T^*T \), \(T-\lambda I \) is also a hyponormal operator for every complex number \(\lambda \). Thus \(T-\lambda I \) is normaloid for every \(\lambda \) by [1: Corollary 4] and so \(W(T) = \sum(T) \) by our theorem.

M. Schreiber [5] has shown that if \(\sum(T) \) is a spectral set for \(T \), \(\sum(T) = W(T) \).

COROLLARY 2. If \(W(T) \) is a spectral set for a bounded operator \(T \), \(W(T) = \sum(T) \).

In fact, since \(W(T) \) is a spectral set for \(T \), we have
\[
\|u_\lambda(T)\| = \|T-\lambda I\| \leq \sup\{ |\mu - \lambda| : \mu \in W(T) \} \leq \|T-\lambda I\|
\]
for each rational function \(u_\lambda(z) = z - \lambda \), and the conclusion follows.

It is obvious that the spectrality of \(\sum(T) \) for \(T \) implies the spectrality of \(W(T) \) for \(T \), but by Corollary 2 the converse implication holds.

The following result is proved in [3] and [5].

COROLLARY 3. For a Toeplitz operator \(T_\phi \), \(W(T_\phi) = \sum(T_\phi) \).

PROOF. Let \(L_\phi \) be a Laurent operator corresponding to a Toeplitz operator \(T_\phi \), it is known \(\sigma(L_\phi) \subseteq \sigma(T_\phi) \). Thus we have
\[
\|T_\phi - \lambda I\| = \|L_{(\phi - \lambda)}\| \leq \|L_{(\phi - \lambda)}\| = \sup \{ |\mu - \lambda| : \mu \in \sigma(L_\phi) \}
\]
\[
\leq \sup \{ |\mu - \lambda| : \mu \in W(T_\phi) \} \leq \|T_\phi - \lambda I\|
\]
and the assertion is true by our theorem.
ON A CONJECTURE OF BERBERIAN

REFERENCES

TôHOKU University and
Hachinoe Technical College.