A THEOREM ON REGULAR VECTOR FIELDS AND ITS APPLICATIONS TO ALMOST CONTACT STRUCTURES

SHUKICHI TANNO

(Received May 6, 1965)

Introduction. In the paper [1], Boothby-Wang dealt with the period function \(\lambda \) of the associated vector field of the regular contact form on a compact contact manifold and proved that \(\lambda \) is differentiable and constant ([6]).

In this note we prove a theorem on the proper and regular vector field, by this we can give a simple proof to one of their result. Moreover, as a natural consequence, this procedure enables us to generalize Morimoto’s theorem (Theorem 5, [4]), concerning the period function on a normal almost contact manifold.

Author wishes to express his best thanks to Professor S. Sasaki who kindly gave him the guidance to study this problem.

1. Regular vector fields. Let \(M \) be a connected differentiable manifold and \(X \) be a differentiable vector field on \(M \) such that \(X \) does not vanish everywhere. We assume that the distribution defined by \(X \) is regular and \(X \) is proper, i.e., \(X \) generates the global 1-parameter group \(\exp tX(-\infty < t < \infty) \) of transformations of \(M \). For the terminologies we refer to [5]. We can find always a 1-form \(\omega \) satisfying \(\omega(X)=1 \). Now the next assumption is that there exists a 1-form \(\omega \) such that \(\omega(X)=1 \) and \(L(X)\omega = i(X) d\omega = 0 \), where \(L(X) \) or \(i(X) \) is the operator of the Lie derivative or interior product operator by \(X \).

First we see that the quotient space \(M/X \) is a Hausdorff space, because \(X \) is proper and regular. Hence by Palais’ theorem ([5], Chap. I, § 5), \(M/X \) is a differentiable manifold and the projection \(\pi : M \to M/X \) is a differentiable map.

Let \(h \) be an arbitrary Riemannian metric in \(M/X \). The tensor \(g \) in \(M \) defined by \(g = \pi^*h + \omega \otimes \omega \) is easily seen to be a Riemannian metric in \(M \), \(\pi^* \) and \(\otimes \) denoting the dual of \(\pi \) and tensor product respectively. Clearly we have \(g(X,X) = 1 \), and we see that the relation \(L(X)g = 0 \) holds good. Namely \(X \) is a unit and Killing vector field with respect to \(g \). Thus each trajectory of \(X \) is a geodesic and the parameter \(t \) in \(\exp tX \) is nothing but the arc length of it.

Suppose that there is a point \(p \) and a positive number \(\lambda \) such that
exp \lambda X \cdot p = p, \text{ and } \exp tX \cdot p \neq p \text{ for } 0 < t < \lambda. \text{ Denote by } l(q) \text{ the leaf passing through a point } q \text{ of } M \text{ and let } U \text{ be a sufficiently small coordinate neighborhood of } p \text{ which is regular with respect to } X. \text{ If we take an arbitrary point } x \text{ in } U \text{ such that } x \text{ does not belong to } l(p), \text{ then we can draw the shortest geodesic } c(x) \text{ from } x \text{ to } l(p). \text{ Clearly at the intersecting point } \bar{x} \text{ of } c(x) \text{ and } l(p), \text{ both geodesics are orthogonal.}

Now as } \exp \lambda X \text{ is an isometry, the image of the geodesic } c(x) \text{ is the geodesic passing through } \bar{x}. \text{ On the other hand, by the regularity, for any point } q \text{ of } c(x) \exp \lambda X \cdot q \text{ belongs to } l(q). \text{ Hence we have } \exp \lambda X \cdot x = x, \text{ and so the period function } \lambda \text{ is constant on } U, \text{ and on } M \text{ as } M \text{ is connected.}

If there exists a point } p \text{ such that } \exp tX \cdot p = p \text{ for any } t, \text{ then this is the same for all point in } M.

Theorem. For a proper and regular vector field } X \text{ on } M, \text{ the following three conditions are equivalent.}

(i) The period function } \lambda \text{ of } X \text{ is constant (finite or infinite).
(ii) There exists a 1-form } w \text{ such that } w(X) = 1 \text{ and } L(X)w = 0.
(iii) There exists a Riemannian metric } g \text{ such that } g(X, X) = 1 \text{ and } L(X)g = 0.

Since we have proved (ii) \rightarrow (iii) \rightarrow (i), the next process is (i) \rightarrow (ii). By virtue of (i), } M \text{ can be considered as a principal fibre bundle whose structural group is a toroidal group } S^1 \text{ or a real additive group } R. \text{ If we take an infinitesimal connection } w \text{ on } M \text{ such that } X \text{ is a fundamental vector field, then (ii) holds goods.}

2. Applications. We denote by } \phi, \xi \text{ and } \eta \text{ the structure tensors of an almost contact structure. As the first application we have the following (see [4])}

Theorem A. Let } M \text{ be an almost contact manifold such that } L(\xi) \eta = 0 \text{ and } \xi \text{ is a proper and regular vector field.}

(i) If } \exp t\xi \cdot p \neq p \text{ for some point } p \text{ in } M \text{ and for any } t, \text{ then } M \text{ is a principal fibre bundle with the group } R.
(ii) If we have } \exp \lambda \xi \cdot p = p \text{ for some point } p \text{ in } M \text{ and a real number } \lambda, \text{ then } M \text{ is a principal fibre bundle with the group } S^1.

In both cases, } \eta \text{ defines an infinitesimal connection on } M.

If } \xi \text{ is an associated vector field of the contact form } \eta, \text{ we have } L(\xi) \eta = 0, \text{ consequently we have}
Corollary 1. In a contact manifold with the contact from η, if an associated vector field is proper and regular, then M is a principal fibre bundle with the group R or S^1 according as (i) or (ii) in Theorem A is satisfied. On M the contact form defines an infinitesimal connection and M/ξ is a symplectic manifold.

In this Corollary, as $L(\xi)d\eta=0$, the symplectic structure W on M/ξ is defined by the relation $\pi^*W = d\eta$.

If the manifold is compact, every vector field is proper. Thus we get the following (see [1])

Corollary 2. Let M be a compact contact manifold with a regular contact form η. Then M is a principal S^1-bundle over the symplectic manifold M/ξ with η as a connection form of an infinitesimal connection.

Theorem B. In the contact manifold, if the associated vector field ξ is proper and regular. Then we can find an almost contact metric structure (ξ, g) associated to the contact form η such that $L(\xi)\phi = 0$, equivalently ξ is a Killing vector field.

Proof. Let $\pi: M \to M/\xi$ be a fibering given in Corollary 1 and let W be the symplectic structure on M/ξ such that $d\eta = \pi^*W$. Further we can define an almost kählerian structure F and the metric h on M/ξ satisfying $W(u, v) = h(u, Fv)$ and $h(Fu, Fv) = h(u, v)$ for any vector fields u, v on M/ξ ([2]). Therefore by the result in [3] M has (ϕ, ξ, η, g)-structure associated to η such that $L(\xi)\phi = 0 = L(\xi)g$ and $g = \pi^*h + \eta \otimes \eta$. Therefore M is a K-contact manifold.

For brevity, we say that an almost contact structure (ϕ, ξ, η) is of type P if it is constructed in a principal fibre bundle M with the structural group S^1 or R and with an almost complex manifold B as its base, using an almost complex structure of B and an infinitesimal connection as in [3].

Theorem C. Suppose that in an almost contact manifold ξ is proper and regular, then $L(\xi)\phi = 0$ if and only if the almost contact structure is of type P.

Proof. From $L(\xi)\phi = 0$ it follows that $L(\xi)\eta = 0$. So, M is a principal fibre bundle with the group S^1 or R and on M η defines an infinitesimal connection. We denote by u^* the horizontal lift of a vector field u on M/ξ with respect to η. It is natural to define an almost complex structure F on M/ξ by
where ϕu^* is considered at the point q contained in the leaf over the origin of u, and $\pi \phi u^*$ does not depend upon the choice of the point q in the leaf as $L(\xi)\phi=0$. Then Theorem C follows immediately.

Remark. The tensor $N_2=(N_j)$ is defined (7) by $N_j(X)=L(\xi)X$ for a vector field X. Theorem C gives a geometrical meaning of $N_2=0$ in the case when ξ is proper and regular. In contact manifold $N_2=0$ is equivalent to the fact that ξ is a Killing vector field.

Corollary 3. Let M be an almost contact manifold such that ξ is proper and regular. If $L(\xi)\phi=0$, then we can find an associated Riemannian metric to the almost contact structure so that ξ is a Killing vector field.

This follows from Theorem C and the similar argument in the proof of Theorem B.

Bibliography

Tôhoku University.