UNRAMIFIED EXTENSIONS OF QUADRATIC NUMBER FIELDS, I

KÔJI UCHIDA

(Received November 20, 1969)

In this paper we study equations of type $X^n - aX + b = 0$, and give examples of (non-solvable) unramified extensions of quadratic number fields. "Unramified" means that any finite prime is unramified.

1. Proof of Theorem 1.

THEOREM 1. Let k be an algebraic number field of finite degree. Let a and b be integers of k. K denotes the splitting field of a polynomial

$$f(X) = X^n - aX + b,$$

i.e., $K = k(\alpha_1, \ldots, \alpha_n)$ where $\alpha_1, \ldots, \alpha_n$ are the roots of $f(X) = 0$. If $(n-1)a$ and nb are relatively prime, any prime ideal of K has the ramification index 1 or 2 over k.

PROOF. Let \mathfrak{p} be a prime of k and let \mathfrak{P} be a prime of K over \mathfrak{p}. We consider splitting of the polynomial $f(X)$ over a local field $k_{\mathfrak{p}}$. If the congruence equation $f(X) \equiv 0 \pmod{\mathfrak{p}}$ has no multiple roots, $f(X)$ splits as

$$f(X) = f_1(X) \cdots f_s(X)$$

over $k_{\mathfrak{p}}$, where $f_i(X)$ are irreducible over $k_{\mathfrak{p}}$ and also mod \mathfrak{p}. Then $K_{\mathfrak{P}}$ is unramified over $k_{\mathfrak{p}}$. Now we assume $f(X) \equiv 0 \pmod{\mathfrak{p}}$ has multiple roots. As

$$Xf'(X) - nf(X) = (n-1)aX - nb$$

and $((n-1)a, nb) = 1$, $\mathfrak{p} \nmid (n-1)a$ holds. Then the $(n-1)aX - nb$ is the g.c.d. of $f(X)$ and $f'(X)$ mod \mathfrak{p}. So

$$f(X) \equiv [(n-1)aX - nb]^{(n-1)aX - nb} \cdots \overline{g}_i(X) \cdots \overline{g}_s(X) \pmod{\mathfrak{p}}$$

holds, where each $\overline{g}_i(X)$ is irreducible and relatively prime to $\overline{g}_j(X)$, $j \neq i$, and
to \((n-1)aX-nb\). By Hensel’s lemma \(f(X)\) splits over \(k\) in the form

\[
f(X) = g_1(X)g_2(X) \cdots g_i(X),
\]

where \(g_i(X) \equiv \bar{g}_i(X) \pmod{\mathfrak{p}}, i \geq 2\). The roots of \(g_i(X)=0, i \geq 2\), generate unramified extensions of \(k_{\mathfrak{p}}\). As \(g_1(X)\) is of degree 2, the ramification index of \(K_{\mathfrak{p}}/k_{\mathfrak{p}}\) is at most 2.

Corollary. Let \(k=\mathbb{Q}\) be the field of the rational numbers. Let

\[
D = \prod_{i<j} (\alpha_i - \alpha_j)^3
\]

be the discriminant of \(f(X)=0\). Assume that any prime number which appears in \(D\) appears odd times. Then \(K = \mathbb{Q}(\alpha_1, \ldots, \alpha_n)\) is unramified over \(\mathbb{Q}(\sqrt{D})\).

Proof. Every prime number which is ramified in \(K/\mathbb{Q}\) appears in \(D\). By assumption it is ramified in \(\mathbb{Q}(\sqrt{D})/\mathbb{Q}\). As the ramification index is 2, it is unramified in \(K/\mathbb{Q}(\sqrt{D})\).

2. As applications of Theorem 1, we obtain some examples of unramified extensions of quadratic fields.

Theorem 2. \(f(X) = X^n - X + 1\) \((n = 5, 6, 7)\) satisfy the condition of Corollary of Theorem 1. Galois groups of \(f(X)=0\) are symmetric groups. Therefore there exist unramified extensions of quadratic fields with alternating groups \(A_5, A_6, A_7\) or symmetric groups \(S_5, S_6, S_7\) as Galois groups.

Proof. 1) We first show that the condition of Corollary is satisfied. In the general case,

\[
D = \prod_{i<j} (\alpha_i - \alpha_j)^3 = (-1)^{n(n-1)/2} \prod_i f'(\alpha_i),
\]

and

\[
\prod_i f'(\alpha_i) = \prod_i (n\alpha_i^{n-1} - a) = \prod_i ((n-1)a\alpha_i - nb)/ \prod_i \alpha_i
\]
hold. Let D_5, D_6 and D_7 be discriminants corresponding to $n=5, 6$ and 7 respectively. Then

$$D_5 = 5^5 - 4^5 = 3125 - 256 = 2869 = 19 \times 151$$

$$D_6 = 5^6 - 6^6 = 3125 - 46656 = -43531 = -101 \times 431$$

and

$$D_7 = 6^7 - 7^7 = 46656 - 823543 = -776887 \text{ (prime)}$$

hold.

2) Now we find the Galois groups of these equations. If $n=5$ (resp. $n=7$), $f(X)$ is irreducible mod 5 (resp. mod 7). If $n=6$, it is irreducible mod 2. So $f(X)$ is irreducible in each case. When n is a prime number, a transitive permutation group of n letters is a symmetric group if it contains a transposition.

$$X^5 - X + 1 \equiv (X^2 - X + 1)(X^3 + X^2 + 1) \pmod{2}$$

and

$$X^7 - X + 1 \equiv (X^2 - X - 1)(X^5 + X^4 - X^3 - X - 1) \pmod{3}$$

are factorizations into prime factors mod 2 and mod 3 respectively. So in these cases Galois groups contain transpositions, and they are symmetric groups. When $n=6$,

$$X^6 - X + 1 \equiv (X + 1)(X^2 + X - 1)(X^3 + X^2 + X - 1) \pmod{3}$$

and

$$X^6 - X + 1 \equiv (X - 2)(X^2 + 2X^4 - 3X^3 + X^2 + 2X + 3) \pmod{7}$$

hold. The last factor of degree 5 is irreducible, because $X^5 - X + 1$ and $X^4 - X$ have no common factors except $X - 2$. So the Galois group is a symmetric group by [3, §61].

3) In every case $K/Q(\sqrt[n]{D})$ is an unramified extension with an alternating group as the Galois group. Let p be a prime number which does not appear in D. Then each $K(\sqrt[p]{\mathcal{P}})/Q(\sqrt[p]{D})$ is unramified and its Galois group is a symmetric group.

REMARK. The case $n=5$ has been proved by Fujisaki [2]. Fröhlich [1]
proves that every finite group appears as a Galois group of some unramified extension. Our theorem suggests that many non-solvable groups can be Galois groups of unramified extensions of quadratic fields. More numerical examples will be given in the forthcoming paper.

THEOREM 3. There exist infinitely many real quadratic field with class numbers divisible by 3.

Proof. If a cubic irreducible equation $X^3 - aX + b = 0$ ($a, b \in \mathbb{Z}$) satisfies the condition of Theorem 1, the Galois group of K/\mathbb{Q} is a symmetric group of three letters. Then $K/\mathbb{Q}(\sqrt{D})$ is an unramified abelian extensions, and so the class number of $\mathbb{Q}(\sqrt{D})$ is divisible by 3, where $D = 4a^3 - 27b^2$ is the discriminant of a given equation. Therefore it is enough to prove there exist infinitely many different $\mathbb{Q}(\sqrt{D})$ with positive D.

If we assume $a \geq 2$, $a \equiv 1 \pmod{3}$ and $b = 1$, $X^3 - aX + 1$ is irreducible and satisfies the condition of Theorem 1 and $D > 0$. Then if $p \neq 2$, 3 is a prime number, the necessary and sufficient condition for $p|D$ for some a is that 4 is a cubic residue mod p. If $p \equiv 2 \pmod{3}$, any number is a cubic residue. So there exists $a_1 > 2$ such that

$$p|4a_1^3 - 27.$$

As the equation

$$a_1 + rp \equiv 1 \pmod{3}$$

has an integral solution r, we may assume that $a_1 \equiv 1 \pmod{3}$. If $4a_1^3 - 27$ is divisible by p^2, we replace a_1 by $a = a_1 + 3p$. Then $4a^3 - 27$ is divisible by p but not by p^2. So p is ramified in $\mathbb{Q}(\sqrt{D})/\mathbb{Q}$. As there exist infinitely many p satisfying the above condition, there exist infinitely many different $\mathbb{Q}(\sqrt{D})$.

References