AW*-ALGEBRAS WITH MONOTONE CONVERGENCE PROPERTY
AND EXAMPLES BY TAKENOUCHI AND DYER

KAZUYUKI SAITO

(Received October 4, 1977, revised February 1, 1978)

In 1951, I. Kaplansky [6] introduced a class of C*-algebras called
AW*-algebras to separate the discussion of the internal structure of a
W*-algebra (or von Neumann algebra) from the action of its elements on
a Hilbert space and showed that much of the “non-spatial theory” of
W*-algebras can be extended to AW*-algebras.

Every W*-algebra is of course AW*, however, the converse is not
true as was shown by Dixmier [3] with an abelian example (the algebra
of all bounded Baire functions on the real line modulo the set of first
category is a non-W*, AW*-algebra). I. Kaplansky [7] proved that an
AW*-algebra of type I is a W*-algebra if and only if its center is a
W*-algebra and conjectured that the theorem is true without the assump-
tion of “type I”. In 1970, O. Takenouchi [12] and Dyer [2], independent-
ly, showed this to be false by counter examples (non-W*, AW*-factors).
In 1976, J. D. Maitland Wright [16, 13] defined a regular σ-completion
(some kind of Dedekind cut completion) of a separable C*-algebra and
proved that the regular σ-completion of an infinite dimensional simple
separable C*-algebra is a type III, non-W*, σ-finite AW*-factor with the
monotone convergence property (see the definition below).

In this paper, the author will give a modification of a J. D. M.
Wright’s theorem and using this, will show that the non-W*, AW*-factors
given by Takenouchi and Dyer are σ-finite, type III AW*-factors. The
key point of the proof is, roughly speaking, to construct a faithful
state on these factors. To do this, a J. D. Maitland Wright’s theorem
plays an essential role. He states that the pure state space of the regular
σ-completion C[0, 1] (which is essentially the same as ∅ in section 1) of
the C*-algebra C[0, 1] of continuous complex functions on [0, 1] is separa-
table ([18, p. 85]).

The AW*-factor given by Takenouchi is a “weakly closed” (in the sense
of [13]) AW*-subalgebra of type I AW*-algebra ∅(M) of all bounded
module endomorphisms of some AW*-module M over an abelian AW*-algebra. The author believes that it is natural to represent AW*-
algebras as “weakly closed” AW^*-subalgebra of some $B(\mathcal{M})$. The author then will show that the AW^*-factor constructed by Dyer can be represented faithfully as a “weakly closed” AW^*-subalgebra of some $B(\mathcal{M})$. Moreover, we shall remark that these factors are monotone closed (in the sense of [5]), simple and do not have any non-trivial separable representations.

1. AW^*-algebras with a monotone convergence property (M. C. P.).

An AW^*-algebra M means that it is both a C^*-algebra and a Baer*-ring ([1], [6]). M has a monotone convergence property (M. C. P.) if for every increasing sequence $\{x_n\}$ of self-adjoint elements in M bounded above has the supremum x in the self-adjoint part of M (we simply denote $x_n \uparrow x$ or $\text{Sup}_n x_n = x$).

First of all, we shall show the following technical lemma.

Lemma. Let M be an AW^*-algebra with M. C. P. For every increasing sequence $\{e_n\}$ of projections in M, let $\bigvee_{n=1}^{\infty} e_n$ be the supremum projection of $\{e_n\}$ in the projection of M. Then $\text{Sup}_n e_n = \bigvee_{n=1}^{\infty} e_n$.

Moreover, for any $a \in M$,

$$\text{Sup}_n a^* e_n a = a^* \left(\bigvee_{n=1}^{\infty} e_n \right) a.$$

Proof. Put $b = \text{Sup}_n e_n$, then $0 \leq e_n \leq b \leq \bigvee_{n=1}^{\infty} e_n$ in M for each n. Thus $e_n \leq \text{LP} (b) \leq \bigvee_{n=1}^{\infty} e_n$ for all n and hence $\text{LP} (b) = \bigvee_{n=1}^{\infty} e_n$ where $\text{LP} (b)$ is the left projection of b in M ([1, 6]). On the other hand, $e_n = b e_n$ for every n implies by [6, Lemma 2.2] that $\text{LP} (b) = b \text{LP} (b) = b$ and $\text{Sup}_n e_n = \bigvee_{n=1}^{\infty} e_n$.

Now arguments used in [5] tells us that for any $a \in M$, $a^* e_n a \uparrow a^* \left(\bigvee_{n=1}^{\infty} e_n \right) a$ in M. This completes the proof.

Using this, we have the following theorem which is a modification of a J. D. M. Wright’s result ([17, Theorem 6]).

Theorem 1. Let M be an AW^*-factor with M. C. P. Suppose that M has a faithful state (not necessarily normal) ϕ and is semi-finite, then M is a σ-finite W^*-algebra. The assumption of semi-finiteness cannot be dropped.

Remark. Maitland Wright proved, without the assumption of M. C. P., however under the condition that M is finite, that the above proposition holds.

Proof of Theorem 1. For any non-zero finite projection e (note that M is semi-finite), put $N = e M e$, then N is a finite AW^*-factor with the faithful
positive functional ψ where ψ(exe) = φ(exe) for x ∈ M. J. D. M. Wright's theorem [17, Theorem 6] tells us that N is a W*-algebra, that is, there exists a faithful W*-representation πe of N on some Hilbert space ℋπe (πe(N) is a weakly closed *-subalgebra with the identity of ℋ(ℋπe)) (the algebra of all bounded linear operators on ℋπe)). Next we shall show that for any ξ ∈ ℋπe, the positive functional φ(e, ξ) on M (where φ(e, ξ)(x) = (πe(exe)ξ, ξ), x ∈ M) is completely additive on projections. To prove this we have only to show that for any decreasing sequence {en} of projections in M with en ↓ 0, φ(e, ξ)(en) ↓ 0 (n → ∞), because M is σ-finite (note that M has a faithful state). Let {en} be any decreasing sequence of projections in M with en ↓ 0, then by the above lemma, Inf en ene = 0 in the self-adjoint part of N. Since {πe(eene)} is a decreasing sequence in the non-negative portion of ℋ(ℋπe), there is A ∈ ℋ(ℋπe) such that πe(eene) ↓ A (strongly). The strong closeness of πe(N) implies A ∈ πe(N). Hence there is a ∈ N(a ≥ 0) such that A = πe(a). The faithfulness of πe implies that a = 0, that is, πe(eene) ↓ 0 strongly. Thus φ(e, ξ) is completely additive on projections of M. The semi-finiteness of M tells us that {φ(e, ξ); e is any non-zero finite projection, e ∈ ℋπe} is a separating family of positive functionals on M which are completely additive on projections of M. Hence by ([10], Theorem 5.2, see also [9]) M is a semi-finite W*-algebra. Non W*, A W*-factors constructed by Takenouchi and Dyer have the M. C. P. and faithful states (see the next section), thus the assumption of semi-finiteness cannot be dropped. This completes the proof of Theorem 1.

Remark. In the above proof, we suppose that M has the M. C. P., however, Theorem 1 still holds under a nominally weaker assumption such that for any increasing sequence {en} of projections in M and for any projection e in M, Sup en ene exists in the self-adjoint part of M and Sup en ene = e(V n−1 en)e.

The above theorem implies that if non-W*, A W*-factor with M. C. P. has a faithful state, then it is of type III ([6, p. 241 Definition]).

In the rest of this section, we treat with examples of abelian A W*-algebras with groups of *-automorphisms of them which are needed in the later sections.

Let B°[0, 1) be the algebra of all bounded Baire functions on [0, 1) and let A be the algebra B°[0, 1) modulo the set of first category. Then one can easily check that A is a non-W*, abelian A W*-algebra which is *-isomorphic with the regular σ-completion of a separable abelian C*-algebra ([2], [18], p. 86). J. D. Maitland Wright proved also that A has
a faithful state because the pure state space of \mathcal{A} is separable [18, Proposition A, Corollary D].

Let G_θ (resp. G_θ) be the group of translations on $[0,1)$ by an irrational number $\theta (\operatorname{mod} 1)$ (resp. by all dyadic rationals in $[0,1)$ (mod 1)). Denote for each $\sigma \in G_\theta$ (resp. G_θ), $\sigma(t) = t + \sigma (\operatorname{mod} 1)$, $f^\sigma(t) = f(\sigma(t))$ for all $t \in [0,1)$, $f \in B^\omega [0,1)$ and $a^\sigma = f^\sigma$ where f belongs to a coset $a(a = f)$, $f \in B^\omega [0,1)$ for all $a \in \mathcal{A}$. Then both G_θ and G_θ naturally induce groups of $*$-automorphisms $(a \to a^\sigma, a \in \mathcal{A})$ of \mathcal{A} (we denote them by the same notations G_θ and G_θ since any confusion does not occur). It is easy to check that G_θ and G_θ act freely and ergodically on \mathcal{A}.

2. Types of the AW^*-factors constructed by Takenouchi. First, we shall sketch briefly the construction of AW^*-factors of [12]. Let Z be an abelian AW^*-algebra, G be an abelian group of $*$-automorphisms of Z with an action $a \to a^g (a \in Z, g \in G)$. One can construct a faithful AW^*-module ([8]) \mathcal{M} over Z as follows: Let \mathcal{M} be the set $l^\omega (G, Z)$ of all sequences $\{x_g\}$ of elements in Z with the indices $g \in G$ such that $\sum_{g \in G} x_g^* x_g$ is in Z (the supremum of the family of finite sums). Then \mathcal{M} is a faithful AW^*-module over Z and the set $\mathcal{B}(\mathcal{M})$ of all bounded module endomorphisms (we simply call them “operators”) of \mathcal{M} is a type I AW^*-algebra with center Z.

Define, for any $a \in Z$ and $g \in G$, the following types of “operators” on \mathcal{M}:

$$L_a: \{x_g\} \to \{a^g x_g\} \quad U_g: \{x_g\} \to \{y_g\} \quad \text{where} \quad y_g = x_{g \cdot h}$$

Then one can easily show that $a \to L_a$ is a $*$-isomorphism of Z into $\mathcal{B}(\mathcal{M})$ and $h \to U_h$ is a unitary representation of G into $\mathcal{B}(\mathcal{M})$ such that $U_h^* L_a U_h = L_{a \cdot h}$ for all $a \in Z$ and $h \in G$.

Next, for any $h \in G$, we introduce the following linear operator (note that this is not a module endomorphism of \mathcal{M}) on \mathcal{M}:

$$V_h: \{x_g\} \to \{y_g\} \quad \text{where} \quad y_g = (x_{g \cdot h})^{-h}$$

For every “operator” on \mathcal{M} has a matrix representation $A \sim \langle a_{g,h} \rangle$ where $a_{g,h} = (A u_{g,h}, v_{g,h}) (g, h \in G)$ (where $u_{g,h} = \{\delta_{g,h}\}$ ($h \in G$) and $\delta_{g,h}$ is the Kronecker’s delta).

Let $\mathcal{M}(Z, G) = \{A \in \mathcal{B}(\mathcal{M}); A \sim \langle a_{g,h} \rangle \text{ where } a_{g,h} = (a_{g \cdot h,e})^h \text{ for any pair } g, h \in G(e \text{ is a unit of } G)\}$, then $A \in \mathcal{M}(Z, G)$ if and only if $AV_h = V_h A$ for all $h \in G$ and $\mathcal{M}(Z, G)$ is an AW^*-subalgebra of $\mathcal{B}(\mathcal{M})$ which contains all U_h and L_a, where an AW^*-subalgebra means that the structure of an AW^*-algebra of $\mathcal{M}(Z, G)$ is compatible with that of $\mathcal{B}(\mathcal{M})$ in the
A W^*-ALGEBRAS

sense of [1, 7].

Takenouchi showed under the condition that the action of G on Z is free and ergodic, $M(Z, G)$ is an AW^*-factor such that $\{L_a; a \in Z\} = \hat{Z}$ is a maximal abelian $*$-subalgebra (whose proof is analogous to that of Murray-von Neumann's) and gave an example of (Z, G) as (\mathcal{U}, G_θ) in section 1. If $M(\mathcal{U}, G_\theta)$ is a W^*-algebra, then \hat{Z} ($*$-isomorphic with \mathcal{U}) is a W^*-algebra. This is a contradiction and hence $M(\mathcal{U}, G_\theta)$ is a non-W^*, AW^*-factor.

The rest of this section is devoted to prove

THEOREM 2. $M(\mathcal{U}, G_\theta)$ is a σ-finite, type III, non-W^*, AW^*-factor with M. C. P. (more precisely, $M(\mathcal{U}, G_\theta)$ is “weakly closed” $*$-subalgebra of $\mathcal{B}(\mathcal{U})$ ($\mathcal{U} = l^2(G_\theta, \mathcal{U})$) in the sense of H. Widom [13], and that, it is monotone closed in the sense that in its self-adjoint part, every norm-bounded increasing net has a least upper bound).

PROOF. First of all, we shall show that $M(\mathcal{U}, G_\theta)$ is “weakly closed” subalgebra of $\mathcal{B}(\mathcal{U})$ where $\mathcal{U} = l^2(G_\theta, \mathcal{U})$ in the sense that for any net $\{A_n\}$ in $M(\mathcal{U}, G_\theta)$ such that $(A_n \xi, \gamma) \to (A \xi, \gamma)$ (order convergence in \mathcal{U}) [13], for some $A \in \mathcal{B}(\mathcal{U})$, $A \in M(\mathcal{U}, G_\theta)$. In fact, putting $A_n \sim \langle a^*_g, h \rangle A \sim \langle a^*_g, h \rangle$, then $a^*_g, h \to a_g, h$ (order convergence in \mathcal{U}) for each pair g and h in G_θ. Thus $a_g, h = \langle a_{g, h} \rangle^h$ for $g, h \in G_\theta$ and $A \in M(\mathcal{U}, G_\theta)$. In particular, $M(\mathcal{U}, G_\theta)$ has M. C. P. In fact, let $\{A_n\}$ be an increasing sequence of self-adjoint elements of $M(\mathcal{U}, G_\theta)$ bounded above by $B \in M(\mathcal{U}, G_\theta)$, then $A_n \uparrow A$ “weakly” for some A (where A is the supremum of $\{A_n\}$ in the self-adjoint part of $\mathcal{B}(\mathcal{U})$), in $\mathcal{B}(\mathcal{U})$ ([13, Lemma 1.4]). It follows by the above argument that $A \in M(\mathcal{U}, G_\theta)$ and $A \leq B$ and hence $M(\mathcal{U}, G_\theta)$ has M. C. P. By the same way, we can easily show that $M(\mathcal{U}, G_\theta)$ is monotone closed.

Next, we shall show that $M(\mathcal{U}, G_\theta)$ has a faithful positive projection map onto $\mathcal{U} = \{L_a; a \in \mathcal{U}\}$. In fact, for any $A \in M(\mathcal{U}, G_\theta)$, let $\phi(A) = L_{a_g, h}$ where $A \sim \langle a_{g, h} \rangle$, then one can easily check that ϕ is a positive projection map of $M(\mathcal{U}, G_\theta)$ onto \mathcal{U}. To prove the faithfulness of ϕ, we argue as follows. For any $A \in M(\mathcal{U}, G_\theta)$ with $A \sim \langle a_{g, h} \rangle$, noting that, $(A^* A)_{s, s} = \sum_{g, h} a_{g, s}^* a_{g, s}$, we have $\phi(A^* A) = 0$ implies $a_{g, s} = 0$ for all $g \in G$ and hence $A = 0$ because $a_{g, h} = (a_{g, h})_s = 0$ for all $g, h \in G$.

Let ψ be a faithful state on \mathcal{U} in section 1, and let $\phi = \psi \circ \phi$, then ϕ is a faithful state on $M(\mathcal{U}, G_\theta)$. Assume that $M(\mathcal{U}, G_\theta)$ is semi-finite, then by Theorem 1, $M(\mathcal{U}, G_\theta)$ is a W^*-algebra, however this is a contradiction because $M(\mathcal{U}, G_\theta)$ is non-W^*. Hence $M(\mathcal{U}, G_\theta)$ is of type III. Since $M(\mathcal{U}, G_\theta)$ has a faithful state ϕ, we can easily show that $M(\mathcal{U}, G_\theta)$ is σ-finite. This completes the proof.
3. **Dyer's example.** In this section, we shall sketch briefly the construction by Dyer [3] and then show that the Dyer's example is a σ-finite, non-W^*, type III AW^*-factor with M. C. P. Moreover we shall prove that it can be represented faithfully as $M(\mathfrak{U}, G_0)$ in section 2. Thus Dyer's factor is also monotone closed.

Let \mathfrak{H} be a Hilbert space with an orthonormal basis $\{e_x; 0 \leq x < 1, x: \text{a real number}\}$. Every bounded linear operator A on \mathfrak{H} has a matrix representation $A_{x,y} = (Ae_y, e_x)$ for x and $y \in [0, 1)$. Let \mathfrak{U}_i (respectively \mathfrak{Z}_i) denote the algebra of operators A such that $A_{x,y} = \delta_{x,y}f(x)$ for any x, y where $f \in B^*[0, 1)$ and $\delta_{x,y}$ is a Kronecker's delta (resp. $\{x; 0 \leq x < 1, f(x) \neq 0\}$ is contained in a set of 1st category in $[0, 1)$).

Let \mathfrak{U}_0 (resp. \mathfrak{Z}_0) be the set of operators A on \mathfrak{H} with matrices $A_{x,y}$ with

1. $A_{x,y} = 0$ except when $y - x = j2^{-k}$ for some $k \geq 1$ and $-2^k < j < 2^k$ (integer).
2. For $k \geq 1$ and $0 \leq i < j < 2^k$, the function defined for $x \in [0, 1)$ by $f(x) = A_{x-2^{-k+i}+x^{-k(i+j)}}$ is a bounded Baire function (resp. $\{x; 0 < x < 1, f(x) \neq 0\}$ is contained in a set of 1st category in $[0, 1)$).

Dyer [3] proved that \mathfrak{U}_0 (resp. \mathfrak{U}_i) is a C^*-algebra with a closed two-sided ideal \mathfrak{Z}_0 (resp. \mathfrak{Z}_i) and the quotient algebra $\mathfrak{U}_0/\mathfrak{Z}_0$ is a non-W^*, AW^*-factor of which $\mathfrak{U}_i/\mathfrak{Z}_i$ is a maximal abelian $*$-subalgebra (note that $\mathfrak{U}_i/\mathfrak{Z}_i$ is $*$-isomorphic with \mathfrak{U} in section 2).

By the above construction, a straightforward verification tells us that \mathfrak{U}_0 has M. C. P. and \mathfrak{Z}_0 is a σ-ideal in the sense that for every increasing sequence $\{A_n\}$ of self-adjoint elements in \mathfrak{Z}_0 which converges strongly to some operator A, $A \in \mathfrak{Z}_0$. Now by the arguments of J. D. M. Wright [15] it follows that $\mathfrak{U}_0/\mathfrak{Z}_0$ has M. C. P. Moreover, $\mathfrak{U}_0/\mathfrak{Z}_0$ has a faithful positive projection \mathcal{P} onto $\mathfrak{U}_i/\mathfrak{Z}_i$. In fact, for any $A \in \mathfrak{U}_0$ with $A \sim \langle A_{x,y} \rangle$, put $B \sim \langle \delta_{x,y}A_{x,y} \rangle (B \in \mathfrak{U}_i)$ and consider the following mapping $\mathcal{P}: \mathfrak{U}_0/\mathfrak{Z}_0 \rightarrow B + \mathfrak{Z}_i$ of $\mathfrak{U}_0/\mathfrak{Z}_0$ onto $\mathfrak{U}_i/\mathfrak{Z}_i$. Then it is easy to check that \mathcal{P} is a projection map of $\mathfrak{U}_0/\mathfrak{Z}_0$ onto $\mathfrak{U}_i/\mathfrak{Z}_i$. For any $A \in \mathfrak{U}_0$ with $A \sim \langle A_{x,y} \rangle$, we have that $(A^*A)_{x,y} = \sum_{0 \leq x \leq 1} |A_{x,y}|^2$ for all x. This implies that \mathcal{P} is positive and faithful. Since $\mathfrak{U}_i/\mathfrak{Z}_i$ is $*$-isomorphic with \mathfrak{U} in section 1, $\mathfrak{U}_i/\mathfrak{Z}_i$ has a faithful state and then by the same reasoning as in Theorem 2, $\mathfrak{U}_0/\mathfrak{Z}_0$ has a faithful state and thus by Theorem 1 we have

Theorem 3. $\mathfrak{U}_0/\mathfrak{Z}_0$ is a σ-finite, non-W^*, type III AW^*-factor.

The rest of this section is devoted to prove the following:

Theorem 4. $\mathfrak{U}_0/\mathfrak{Z}_0$ is $*$-isomorphic with $M(\mathfrak{U}, G_0)$ in section 2.
PROOF. For any \(A + \mathcal{Y} \in \mathcal{A}/\mathcal{S}_0 \) (\(A \in \mathfrak{U}_0 \)), let \(A \sim \langle A_{x,y} \rangle \), then \(A_{x,y} = 0 \) except when \(y - x = j \cdot 2^{-k} \) for some \(k \geq 1 \), \(-2^k < j < 2^k\) and for \(k \geq 1 \), \(0 \leq j \leq 2^k \) the function \(x \rightarrow f(x) = A_{x-k(2^k),x-k(2^{-k})} \) (\(0 \leq x < 1 \)) is in \(B^a[0,1] \). Keeping the notations in the last paragraph of section 1, for any \(g \in \mathcal{G}_0 \), \(x \rightarrow A_{x;g(x),x} \) is a bounded Biare function on \([0,1]\). Let \(\phi \) be the canonical map of \(B^a[0,1] \) onto \(\mathfrak{U} \) and \(a_{g,h} = \phi(x \rightarrow A_{x;g(x),x}) \) for \(g \in \mathcal{G}_0 \). Note that \(a_{g,h} \) does not depend on the choice of \(A \in \mathcal{A} + \mathcal{Y} \).

In fact, if \(A, B \in \mathcal{A} + \mathcal{Y} \), then \(A - B \in \mathcal{S}_0 \) and hence \(\phi(x \rightarrow A_{x;g(x),x}) = \phi(x \rightarrow B_{x;g(x),x}) \) for all \(g \in \mathcal{G}_0 \). Let \(a_{g,h} = (a_{g,h})_k \) for any \(g, h \in \mathcal{G}_0 \), then \((a_{g,h}) \) defines an “operator” \(\psi(A + \mathcal{Y}) \) on \(\mathfrak{U} = \psi(G_0, \mathfrak{U}) \) such that \(\psi(A + \mathcal{Y})g,h = a_{g,h} \) for all \(g, h \in \mathcal{G}_0 \).

Observe that \(a_{g,h} \in \mathfrak{U} \) is the canonical image of \(x \rightarrow A_{x;g(x),h(x)} \) for any \(g, h \in \mathcal{G}_0 \).

Since \(\sum_{g \in \mathcal{G}_0} |\langle A_{x;g(x),h(x)} \rangle|^2 = \sum_{g \in \mathcal{G}_0} |(A_{x;g(x)}, e_{g(x)})|^2 \leq \sum_{g \in \mathcal{G}_0} |(A_{x;g(x)}, e_{g(x)})|^2 = ||A||^2 \leq ||A|| \) for all \(x \in [0,1] \), we have that \(\sum_{g \in \mathcal{G}_0} |a_{g,h}|^2 \leq ||A|| \cdot 1 \) on \(\mathfrak{U} \). Thus, for any \(\xi = (x_g) \in \mathfrak{U} \), \(\sum_{g \in \mathcal{G}_0} x_g a_{g,h} \leq ||\xi|| \cdot ||A|| \). This implies that \(\sum_{g \in \mathcal{G}_0} |x_g a_{g,h}|^2 \in \mathfrak{U} \) (order convergent in \(\mathfrak{U} \)). Put \(\eta_g = \sum_{g \in \mathcal{G}_0} x_g a_{g,h} \in \mathfrak{U} \), we can show that \(\sum_{g \in \mathcal{G}_0} |\eta_g|^2 \in \mathfrak{U} \) (order convergent in \(\mathfrak{U} \)). In fact, let \(x_g \) be the inverse image of \(x_g \) by \(\phi \) in \(B^a[0,1] \), then \(\sum_{g \in \mathcal{G}_0} |x_g(x)|^2 \leq ||\xi||^2 \) except on a set of first category. Hence it follows that

\[
\sum_{h \in \mathcal{G}_0} \sum_{g \in \mathcal{G}_0} |\widehat{x}_g(x)A_{x;g(x),h(x)}|^2 = \sum_{h \in \mathcal{G}_0} \sum_{g \in \mathcal{G}_0} |\widehat{x}_g(x)(A_{x;g(x),h(x)})|^2
= \sum_{h \in \mathcal{G}_0} \sum_{g \in \mathcal{G}_0} |\phi_g(x)(A_{x;g(x),h(x)}e_{g(x)})|^2
\]

(\(\widehat{x}_g(x) = 0 \) if \(y \neq \sigma_g(x) \) for any \(g \in \mathcal{G}_0 \) and \(\widehat{x}_g(x) = \widehat{x}_g(x) \) if \(y = \sigma_g(x) \) \(g \in \mathcal{G}_0 \).

\[
= \sum_{h \in \mathcal{G}_0} |(A_{x;g(x),h(x)})|^2 \quad \text{(where \(\widehat{x}_g(x) \) is in \(\mathfrak{U} \))}
= \sum_{h \in \mathcal{G}_0} |(e_{g(x)}, A^*(x_{g(x)}))|^2 \leq ||A||^2 \cdot ||\widehat{x}_g(x)||^2
= ||A||^2 \cdot ||\xi||^2
\]

except on a set of first category. Thus \(\sum_{g \in \mathcal{G}_0} |\sum_{g \in \mathcal{G}_0} x_g a_{g,h}|^2 \leq ||A|| \cdot ||\xi||^2 \) and \(\sum_{h \in \mathcal{G}_0} |\eta_h|^2 \in \mathfrak{U} \). Hence let \(\psi(A + \mathcal{Y})\xi = (\sum_{g \in \mathcal{G}_0} x_g a_{g,h}) \in \mathfrak{U} \), then \(\psi(A + \mathcal{Y}) \in \mathcal{B}(\mathfrak{U}) \) and \(||\psi(A + \mathcal{Y})|| \leq ||A + \mathcal{Y}|| \). \(\psi(A + \mathcal{Y})g,h = a_{g,h} \) for all \(g, h \) implies that \(\psi(A + \mathcal{Y}) \in \mathcal{M}(\mathfrak{U}, G_0) \). Thus \(\psi \) is a bounded \(*\)-linear map of \(\mathfrak{U}/\mathcal{S}_0 \) into \(\mathcal{M}(\mathfrak{U}, G_0) \). Next we shall show that \(\psi \) is a \(*\)-isomorphism.

For any \(A + \mathcal{Y}, B + \mathcal{Y} \in \mathfrak{U}/\mathcal{S}_0 \) (\(A, B \in \mathfrak{U}_0 \)),

\[
(AB)_{g,h} = \sum_{k \in \mathcal{G}_0} A_{x;g(x),h(x)}B_{x;g(x),h(x)}
\]

for all \(0 \leq x < 1 \). Thus \(\sum_{k \in \mathcal{G}_0} a_{g,h} b_{g,h} \) is order convergent to \(\phi(x \rightarrow (AB)_{g,h}(x)) \) in \(\mathfrak{U} \). Hence \(\psi(AB + \mathcal{Y}) = \psi(A + \mathcal{Y}) \psi(B + \mathcal{Y}) \). If
\[\varphi(A + \mathfrak{S}_0) = 0 \] \((A \in \mathfrak{N}_0) \), then \(\{ x; 0 \leq x < 1, A_{g}(x), h(x) \neq 0 \} \) is contained in a set of 1st category in \([0, 1)\). Thus for all \(k \geq 1, \ 0 \leq i, j < 2^k, \)
\[x \rightarrow A_{2^{-k}(i+x), 2^{-k}(j+x)} \] has a first category support, and hence \(A \in \mathfrak{S}_0 \), that is, \(A + \mathfrak{S}_0 = 0 \). This implies that \(\varphi \) is a \(* \)-isomorphism of \(\mathfrak{N}_0/\mathfrak{S}_0 \) into \(M(\mathfrak{A}, G_0) \).

Next, we shall show that the map \(\varphi \) is onto. To do this we argue as follows: Let \(A \in M(\mathfrak{A}, G_0) \) with \(A \sim \langle \sigma_{g,h} \rangle \). Then one can choose for any \(g \) and \(h \in G_0 \), a function \(a_{g,h}(x) \in L^\infty(0, 1) \) such that there is a Baire set contained in a set of 1st category \(I \) in \([0, 1)\) such that
\[\left| \sum_{g,h \in G_0} a_{g,h}(x) \xi_g \eta_h \right| \leq \| A \| \left(\sum_{g,h \in G_0} \| \xi_g \| \right)^{1/2} \left(\sum_{g,h \in G_0} \| \eta_h \| \right)^{1/2} \]
for all \(\{ \xi_g \}, \{ \eta_h \} \in l^2(G_0) \) and for all \(x \in [0, 1) \setminus I \) where \(\bar{c} \) is the complex conjugate of a complex number \(c \). Replacing \(a_{g,h}(x) \) by \(a_{g,h}(x) \) with the function \(a_{g,h}(x) \) defined to be zero if \(x \in I \) and equal to \(a_{g,h}(x) \) otherwise, we have that for any \(\{ \xi_g \}, \{ \eta_h \} \in l^2(G_0) \),
\[\left| \sum_{g,h \in G_0} a_{g,h}(x) \xi_g \eta_h \right| \leq \| A \| \left(\sum_{g,h \in G_0} \| \xi_g \| \right)^{1/2} \left(\sum_{g,h \in G_0} \| \eta_h \| \right)^{1/2} \]
for all \(x \). Now we shall define \(\langle A_{g,h} \rangle \) as follows: \(A_{g,h} = 0 \) except when \(x-y = j \cdot 2^{-k} \) for some \(k \geq 1, \ -2^k < j < 2^k, \ A_{g,X}(x) = a_{g,h}(x) \leq x < 1, \ g \in G_0 \), then \(x \rightarrow A_{2^{-k}(i+x), 2^{-k}(j+x)} \) is a bounded Baire function on \([0, 1)\). To see that \(\langle A_{g,h} \rangle \) determines a bounded linear operator \(B \) on \(\mathfrak{S}_0 \), we have only to show that \(\sum_{0 \leq x, Y < 1} A_{x,y} \xi_{x,y} \eta_{x,y} \) is a bounded Measurable function on \([0, 1)\). In fact,
\[\sum_{0 \leq x < 1} \sum_{g,h \in G_0} A_{g,X}(x) \xi_{g,h} \eta_{g,h} \] \(\text{(where } G_{h_0} = \{ \sigma_{X-k_0}; i = 0, 1, 2, \ldots, 2^{k_0} - 1 \} \) \)
\[= \sum_{0 \leq x < 1} \sum_{g,h \in G_0} \sum_{k \in G_{h_0}} A_{g,h+k}(x) \xi_{g+h,k} \eta_{g+h,k} \] \(\text{and hence there is a } B \in \mathfrak{N}_0 \) such that \((Be_x, e_y) = A_{x,y} \) for all \(x, y \). By the construction, it is easy to check that \(\varphi(B + \mathfrak{S}_0) = A \). Thus \(\varphi \) is onto. Hence \(\mathfrak{N}_0/\mathfrak{S}_0 \cong M(\mathfrak{A}, G_0) \). This completes the proof of Theorem 4.

4. Remarks. (1) We shall remark first that every \(\sigma \)-finite type III
A AW^*-factor is simple. Certain standard arguments tell us that for any pair e and f of non-zero projections in each σ-finite type III AW^*-factor M, $e \sim f$ in M. In fact, since “comparability theorem” of projections and “additivity of equivalence” of projections hold in any AW^*-algebra ([6]), we can easily show that for any non-zero projection e in M, there exists a mutually orthogonal sequence of projections $\{e_i\}_{i=1}^\infty$ in M such that $e = \sum_{i=1}^\infty e_i$, $e \sim e_i$ for all i. Let $\{f_j\}_{j\in J}$ be a maximal family of orthogonal projections such that $f_j \prec e$ for all j. Then the σ-finiteness of M implies that the cardinal of J is at most countable. The maximality of $\{f_j\}_{j\in J}$ tells us that $1 - \sum_{j\in J} f_j = 0$. Thus $1 = \sum_{j\in J} f_j < \sum_{i=1}^\infty e_i = e$ and $e \sim 1$ in M.

Now let I be any non-zero uniformly closed two-sided ideal of M, then by F. B. Wright’s theorem [14], I contains a non-zero projection e. Thus, by the above argument, $e \sim 1$ and $1 \in I$, that is, $I = M$ and M is simple.

(2) We note also that every type I_∞ or type II_∞ AW^*-factor is not simple because the uniformly closed two-sided ideal generated by all finite projections in it is non-trivial.

Using this, the regular σ-completion \hat{A} of a simple, infinite dimensional, separable unital C^*-algebra A is neither of type I_∞ nor of type II_∞ (because \hat{A} is simple), that is, \hat{A} is of type II_1 or of type III. Since \hat{A} has a faithful state ([18, Theorem M]), [17, Theorem 6] tells us that \hat{A} is of type III.

(3) Next we shall show that for any σ-finite, type III non-W^*, AW^*-factor M, M does not have any non-trivial separable representations. Suppose, on the contrary, that M has a non-trivial separable representation (π, \mathcal{D}_π) (\mathcal{D}_π is separable). Then we may assume without loss of generality that $\pi(1) = 1_{\mathcal{D}_\pi}$ (the identity operator on \mathcal{D}_π). Feldman and Fell [4] state that π is completely additive on projections and by the argument in (1) (M is simple), π is faithful. This implies that M has sufficiently many c.a. states. Thus M is a W^*-algebra by [9]. This is a contradiction and M has no non-trivial separable representations.

Thus the examples $M(\mathcal{G}, G_\theta)$, $M(\mathcal{G}, G_\xi)$ and \hat{A} are simple and do not have any non-trivial separable representations.

We note that the above statements also hold for any σ-finite, properly infinite AW^*-algebra without any W^*-direct summands, but we will omit the details.

(4) We shall also remark that there is a monotone closed C^*-factor which is not a W^*-algebra ($M(\mathcal{G}, G_\theta)$, $M(\mathcal{G}, G_\xi)$, \hat{A}) see [5, Corollary 3.10].
REFERENCES