HELSON-SZEGÖ-SARASON THEOREM FOR DIRICHLET ALGEBRAS

YOSHIKI OHNO

(Received November 28, 1977, revised February 25, 1978)

Two linear subspaces in a Hilbert space are said to be at positive angle if
\[\sup \, |(f, g)| < 1 \]
where \(f \) and \(g \) range over the elements of the respective linear subspaces with norm at most 1. Let \(\mu \) be a finite positive Borel measure on the unit circle \(T \) in the complex plane. Let \(\chi \) be the function on \(T \) defined by \(\chi(e^{i\theta}) = e^{i\theta} \). For each integer \(n \), we form in the Hilbert space \(L^2(d\mu) \) the linear subspace \(\mathcal{F}_n \) spanned by the functions \(\chi^n, \chi^{n+1}, \ldots \). For any set \(S \) of complex-valued functions, write \(S = \{ f \mid f \in S \} \).

Helson and Szegö [6] and Helson and Sarason [5] have proved the following result.

Theorem 1. Let \(n \) be a natural number. In order for \(\mathcal{F}_0 \) and \(\mathcal{F}_n \) to be at positive angle in \(L^2(d\mu) \) it is necessary and sufficient that \(d\mu \) is absolutely continuous with respect to the Lebesgue measure \(d\theta \) on \(T \), strictly so that \(d\mu = w(d\theta), w \in L^1(d\theta) \), and \(w \) has the form
\[
w = \left| P \right|^2 e^{i\alpha} c,\]
where \(P \) is a polynomial of degree less than \(n \), \(r \) is a real bounded function, and \(C_{\alpha} \) is the conjugate of a real function \(s \) with bound smaller than \(\pi/2 \).

For \(n = 1 \), Devinatz [1, 2] and Ohno [9] extended this result to a Dirichlet algebra setting. See also Merrill [7] as regards another result of this prediction type. The main object of this note is to show that the result is valid for a general natural number \(n \).

Let \(X \) be a compact Hausdorff space and let \(A \) be a Dirichlet algebra on \(X \), i.e., \(A \) is a uniform algebra on \(X \) such that the real parts of the functions in \(A \) are uniformly dense in the real continuous functions on \(X \). Let \(m \) be the unique representing measure on \(X \) for a complex homomorphism of \(A \). We assume that the Gleason part of \(m \) contains
more than one point. If \(0 < p < \infty\), \(H^p\) shall be the closure of \(A\) in \(L^p(dm)\) and \(H^\infty\) shall be the weak*-closure of \(A\) in \(L^\infty(dm)\). We put
\[
A_0 = \left\{ f \in A \left| \int f \, dm = 0 \right. \right\} \quad \text{and} \quad H^p_0 = \left\{ f \in H^p \left| \int f \, dm = 0 \right. \right\} \quad (1 \leq p \leq \infty).
\]
We denote by \((H^p_0)^*\) (resp. \(A^\circ\)) the ideal generated by products of \(n\) elements in \(H^\infty_0\) (resp. \(A_0\)). We shall make use of the theory of the abstract Hardy spaces. We refer to Gamelin [4] in this connection.

Let \(\nu\) be a positive finite measure on \(X\) and consider a condition for \(A\) and \(A^\circ\) to be at positive angle in \(L^2(d\nu)\). For the sake of simplicity we shall, at the outset, assume that \(d\nu\) is absolutely continuous with respect to \(dm\), i.e., \(d\nu = wd\nu\), where \(w\) is a non-negative function in \(L^{1}(dm)\).

For \(n = 1, 2, \ldots\), we define
\[
\rho_n = \sup \left| \int fg \, w dm \right|
\]
where \(f\) and \(g\) range over the elements of \(A\) and \(A^\circ\), respectively, subject to the restriction
\[
\int |f|^p w dm \leq 1 \quad \text{and} \quad \int |g|^p w dm \leq 1.
\]

PROPOSITION 2. If \(\rho_n < 1\), then \(\int \log w dm > -\infty\).

PROOF. We denote the norm in \(L^2(w dm)\) by \(\| \cdot \|_p\). Suppose that \(\int \log w dm = -\infty\). By Szegö’s theorem ([4], Theorem 8.2),
\[
\inf \left\{ \int |1-f|^p w dm \mid f \in A_0 \right\} = 0
\]
for \(0 < p < \infty\). We consider the case \(p = 4n\) and choose \(f_k \in A_0\) such that \(\|f_k - 1\|_{4n} \to 0\) \((k \to \infty)\). Then there exists a constant \(M\) such that \(\|f_k\|_{4n} \leq M\) \((k = 1, 2, \ldots)\). By Hölder’s inequality and Minkowski’s inequality,
\[
\int |f_k|^p w dm - 1^p w dm \\
\leq \left\{ \int |f_k - 1|^p w dm \right\}^{1/2} \left\{ \int |f_k|^{4n-1} + |f_k|^{4n-2} + \cdots + 1^{4n} w dm \right\}^{1/2} \\
\leq \|f_k - 1\|_4 \left\{ |f_k|^{4n-1} + |f_k|^{4n-2} + \cdots + |1|_{4n} \right\}^2 \\
\leq \|f_k - 1\|_4 \left\{ (K^{4n-1} + K^2 M^{4n-2} + \cdots + K^n) \right\}^2
\]
where \(K = \left\{ \int w dm \right\}^{1/4n}\). It follows that \(\|f_k - 1\|_{4n} \to 0\) \((k \to \infty)\). This shows that \(1\), hence any constant function lies in the \(L^p(w dm)\)-closure...
of A_n°. It follows that $\rho_n = 1$. This contradicts the hypothesis and we have $\int \log wd\mu > -\infty$.

Thus, in order to characterize w with $\rho_n < 1$, we may as well assume, from the outset, that $\int \log wd\mu > -\infty$. In this case, it is easy to see that

$$\rho_n = \sup \left\| \int fgwd\mu \right\|$$

where f and g range over the elements of H^∞ and $(H_0^n)^n$, respectively, subject to the restriction

$$\int |f|^2wd\mu \leq 1 \quad \text{and} \quad \int |g|^2wd\mu \leq 1.$$

We begin by following an idea of Helson and Szegö [6]. Such a function w is of the form $|h|^2$, h being an outer function in H^2 ([3], Theorem 6). Define the function $e^{-i\phi}$ by equation $w = h^2e^{-i\phi}$. Then ρ_n is given by

$$\rho_n = \sup \left\| (fh)(gh)e^{-i\phi}d\mu \right\|$$

where the supremum is taken over all $f \in H^\infty$ and $g \in (H_0^n)^n$ such that

$$\int |fh|^2d\mu \leq 1 \quad \text{and} \quad \int |gh|^2d\mu \leq 1.$$

By Wermer's embedding theorem ([4], Theorem 7.2), there exists an inner function Z in H^∞ such that $H_0^n = ZH^\infty$. Then $(H_0^n)^n = Z^nH^\infty$ and we have

$$\rho_n = \sup \left\| (fh)(gh)Z^n e^{-i\phi}d\mu \right\|$$

where f and g range over the elements of H^∞ subject to the respective restriction

$$\int |fh|^2d\mu \leq 1 \quad \text{and} \quad \int |gh|^2d\mu \leq 1.$$

Since h is outer in H^2, $\{fh \mid f \in H^\infty\}$ is dense in H^2 and more specifically $\{fh \mid f \in H^\infty, \int |fh|^2d\mu \leq 1\}$ is dense in the unit ball of H^2. Thus $\{fgZ^\phi \mid f, g \in H^\infty, \int |fh|^2d\mu \leq 1, \int |gh|^2d\mu \leq 1\}$ is dense in the unit ball of H^2 (cf. [2], Lemma 6). Therefore (2) can be written in the form

$$\rho_n = \sup \left\| \int fZ^n e^{-i\phi}d\mu \right\|$$
where \(f \) ranges over the functions in \(H^1 \) such that \(\int |f| \, dm \leq 1 \). Evidently (3) expresses \(\rho_n \) as the norm of the linear functional on \(H^1 \) defined by

(4) \[\int f Z^* e^{-i\phi} \, dm \]

for \(f \in H^1 \). By the Hahn-Banach theorem, this linear functional has a norm-preserving extension to the whole \(L^1(dm) \). Since \(L^1(dm)^* = L^\infty(dm) \), we can identify the above extension with \(Z^* e^{-i\phi} - g_0 \in L^\infty(dm) \). In this case \(g_0 \in H_0^\infty \), because

\[
\int f Z^* e^{-i\phi} \, dm = \int f(Z^* e^{-i\phi} - g_0) \, dm \quad (f \in A)
\]

and so \(\int f g_0 \, dm = 0 \) (\(f \in A \)), implying \(g_0 \in H_0^\infty \). Furthermore, for every \(g \in H_0^\infty \), \(Z^* e^{-i\phi} - g \) gives an extension of the linear functional given by (4) to the whole \(L^1(dm) \) and so

\[
\rho_n = \| Z^* e^{-i\phi} - g_0 \| \leq \| Z^* e^{-i\phi} - g \| \quad (g \in H_0^\infty)
\]

where \(\| \cdot \| \) denotes the norm in \(L^\infty(dm) \). It follows that

(5) \[
\rho_n = \inf_{g \in H_0^\infty} \| Z^* e^{-i\phi} - g \| = \inf_{F \in H^\infty} \| 1 - Z^{-n} e^{i\phi} F \|.
\]

Proposition 3. \(\rho_n < 1 \) if and only if for some \(\varepsilon > 0 \) and \(F \in H^\infty \), we have

(6) \[
|F| > \varepsilon
\]

(7) \[
|\text{Arg} (F h^2 Z^{-n})| < \pi/2 - \varepsilon
\]

where \(-\pi \leq \text{Arg} \, z < \pi \).

Proof. If \(\rho_n < 1 \), take \(\varepsilon > 0 \) such that \(\rho_n \leq 1 - 2\varepsilon \). Then by (5), there exists an \(F \in H^\infty \) such that \(\| 1 - Z^{-n} e^{i\phi} F \| < 1 - \varepsilon \). This implies \(|F| > \varepsilon \), and then (7) is geometrically obvious, perhaps with a smaller value of \(\varepsilon \).

Conversely if \(F \) satisfies (6) and (7), then it is easy to see that

\[
\| Z^{-n} e^{-i\phi} - \lambda F \| < 1
\]

for some \(\lambda > 0 \), and so \(\rho_n < 1 \).

Proposition 4. If \(F \in H^1 \) and

(8) \[
|\text{Arg} (F Z^{-k})| < \pi/2 - \varepsilon
\]
then there exist an integer \(m(0 \leq m \leq k)\) and \(B \in H^1\) such that \(\int Bdm \neq 0\) and \(F = Z^mB\).

Proof. Since \(H_0^1 = ZH^1\), it suffices to show that if \(F = Z^kB\) and \(B \in H^1\), then \(\int Bdm \neq 0\). By (8),

\[
|\text{Arg } B| = |\text{Arg } (FZ^{-k})| < \frac{\pi}{2} - \varepsilon
\]

and we have \(\text{Re } B \geq 0\). Since \(B \in H^1\), it follows from Theorem 12 of Devinatz [2] that \(B\) is outer in \(H^1\). Hence we have \(\int Bdm \neq 0\).

We denote by \(\mathscr{H}^p\) the closure in \(L^p(dm)\) of the set of polynomials in \(Z\) and denote by \(\mathscr{L}^p\) the closure in \(L^p(dm)\) of the set of polynomials in \(Z\) and \(\bar{Z}\) (the norm closure for \(1 \leq p < \infty\); the weak*-closure for \(p = \infty\)). For \(1 \leq p \leq \infty\), we put

\[
I^p = \left\{ f \in H^p \mid \int f\bar{Z}^k dm = 0 \ (k = 0, 1, 2, \cdots) \right\}.
\]

Lemma 5. (Merrill and Lal [8], Lemma 5.) If \(1 \leq p \leq \infty\), then

\[
H^p = \mathscr{H}^p \oplus I^p,
\]

\[
L^p = \mathscr{L}^p \oplus N^p
\]

where \(\oplus\) denotes the algebraic direct sum and \(N^p\) denotes the closure of \(I^p + I^p\) in \(L^p(dm)\) (the norm closure for \(1 \leq p < \infty\); the weak*-closure for \(p = \infty\)).

Theorem 6. In order for \(A\) and \(\overline{A_0^s}\) to be at positive angle in \(L^2(dm)\), it is necessary and sufficient that \(w\) has the form

(9)

\[
w = |P|^r e^{iCs}
\]

where \(P\) is a function in \(H^\infty\) such that \(P \perp A_0^s\) in \(L^2(dm)\), \(r, s \in L^2_H(dm)\), \(||s|| < \pi/2\) and \(Cs\) is the conjugate of \(s\).

Proof. We assume \(\rho_n < 1\). By Proposition 3, there exist \(\varepsilon > 0\) and \(F \in H^\infty\) such that \(|F| > \varepsilon\) and

(10)

\[
|\text{Arg } (Fh^2Z^{1-n})| < \frac{\pi}{2} - \varepsilon.
\]

Let \(s\) be the function bounded by \(\pi/2 - \varepsilon\) such that

(11)

\[
s + \text{Arg } (Fh^2Z^{1-n}) = 0.
\]

We put

(12)

\[
S = Fh^2Z^{1-n} e^{-Cs + is},
\]
then, by (11), \(S \geq 0 \). From Theorem 10 of [2], we conclude that \(e^{-C_2 + is} \in H^1 \) is outer. By (10) and Proposition 4, we may write \(Fh^2 = Z^m B \), where \(B \in H^1 \), \(\int Bdm \neq 0 \) and \(0 \leq m \leq n - 1 \). Therefore

\[
S = BZ^{-k}e^{-C_2 + is} \geq 0
\]

and so

\[
Z^k S = Be^{-C_2 + is} \in H^{1/2}
\]

where \(k = n - m - 1 \). Furthermore, by Jensen’s inequality,

\[
\int \log |Z^k S| dm = \int \log |B| dm + \int \log |e^{-C_2 + is}| dm
\]

\[
\geq \log \left| \int Bdm \right| + \log \left| \int e^{-C_2 + is} dm \right| > -\infty
\]

and so we have

\[
\exp \int \log |Z^k S| dm > 0 .
\]

Using Theorem 2 of [3], it follows from (14) and (15) that there exist an outer function \(P \) in \(H^1 \) and an inner function \(q \) in \(H^\infty \) such that

\[
Z^k S = qP^2 .
\]

Since \(S = |S| \) and \(|S| = |P|^2 \), we have from (16) that

\[
qP^2 = Z^k |P|^2 .
\]

Since \(P \) is outer, it follows that \(P \) is not zero. Thus we may divide (17) by \(P \) and we obtain

\[
qP = Z^k \bar{P} .
\]

By Lemma 5, we may write

\[
P = \sum_{j=0}^n a_j Z^j + \alpha_i \in H^{p_1} \oplus I^1
\]

where \(\alpha_i \) belongs to \(I^1 \). Now

\[
Z^k \bar{P} = \bar{a}_0 Z^k + \bar{a}_1 Z^{k-1} + \cdots + \bar{a}_{k-1} Z + \bar{a}_k
\]

\[
+ \bar{a}_{k+1} \bar{Z} + \bar{a}_{k+2} \bar{Z}^2 + \cdots + Z^k \bar{\alpha}_i .
\]

Because \(a_{k+1} Z + a_{k+2} Z^2 + \cdots \in H^0_1 \) and \(\bar{Z} \bar{\alpha}_i \in I^1 \cap H^1_1 \), we have

\[
g = a_{k+1} Z + a_{k+2} Z^2 + \cdots + \bar{Z} \bar{\alpha}_i \in H^1_1 .
\]

By (18), \(Z^k \bar{P} \in H^1 \) and we conclude \(\bar{g} \in H^1 \) by (19). Hence \(g \in H^1 \cap H^1 \). Since \(\bar{A} + A_0 \) is weak*-dense in \(L^m(dm) \), we have \(g = 0 \) and
\[Z^k \bar{P} = \bar{a}_0 Z^k + \bar{a}_1 Z^{k-1} + \cdots + \bar{a}_{k-1} Z + \bar{a}_k. \]

Hence \(P \) has the form
\[P = a_0 + a_1 Z + \cdots + a_k Z^k \]
where \(0 \leq k \leq n - 1 \). Therefore \(P \in H^\infty \) and \(P \perp A^*_o \) in \(L^2(dm) \). Indeed, if \(G \in A^*_o \subset (H^\infty)^n \), then \(G = Z^k K \) for some \(K \in H^\infty \) and we have
\[
(P, G) = \left(\sum_{j=0}^{k} a_j Z^j \right) \bar{Z}^k K dm = \sum_{j=0}^{k} a_j \int \bar{Z}^{k-j} \bar{K} dm = 0,
\]
since \(m \) is multiplicative on \(H^\infty \) and \(n - 1 \geq k \). Now by (16) and (12) we have
\[
|P|^2 = S = |S| = |F| |h|^2 e^{-Cs}
\]
and since \(w = |h|^2 \),
\[
w = |P|^2 |F|^{-1} e^{Gs} = |P|^2 e^{r} e^{Gs}
\]
where \(r = -\log |F| \). In this case \(r, s \in L^\infty(dm) \) and \(|s| < \pi/2 \).

Conversely, suppose \(w \) has the form (9). We put \(S = |P|^2 \). Since \(Z^{n-1} Pf \in (H^\infty)^n \) for \(f \in I^\infty \), we have
\[
\int Z^{n-1} S f dm = \int Z^{n-1} Pf, P = 0 \quad (f \in I^\infty).
\]
If \(f \in I^\infty \), then it is easy to see that \(\bar{Z}^{2(n-1)} f \) is also in \(I^\infty \). Therefore, by (20),
\[
\int Z^{n-1} S f dm = \int Z^{n-1} S \bar{Z}^{2(n-1)} f dm = 0 \quad (f \in I^\infty).
\]
Since \(S = \bar{S} \),
\[
\int Z^{n-1} S \bar{f} dm = 0 \quad (f \in I^\infty).
\]
It follows from (20) and (21) that
\[
\int Z^{n-1} S f dm = 0 \quad (f \in I^\infty \oplus I^\infty).
\]
By Lemma 5, \(Z^{n-1} S \in \mathcal{L}^1 \). Furthermore, we have
\[
\int Z^{n-1} S \bar{Z}^k dm = \begin{cases} \int (Z^{n-1-k} P, P) = 0 & (n - 1 - k \geq n, \text{i.e., } k = -1, -2, \cdots) \\ \int (P, Z^{k+1-n} P) = 0 & (k + 1 - n \geq n, \text{i.e., } k = 2n - 1, 2n, \cdots). \end{cases}
\]
We conclude that \(Z^{n-1} S \) has the form
Y. OHNO

\[Z^{-1}S = a_0 + a_1Z + \cdots + a_{2n-2}Z^{2n-2}. \]

We put

\[k = \max \{m | 0 \leq m \leq n - 1, a_{m+n-1} \neq 0 \} \]

Since \(S \neq 0 \) and \(\overline{S} = S \), such \(k \) exists. Then \(Z^kS \in H^\infty \) and \(\left\{ Z^kSdm \neq 0 \right\} \), therefore by Theorem 2 of [3], \(Z^kS \) has the factoring

\[Z^kS = qG^2 \]

where \(q \) is inner and \(G \) is outer in \(H^\infty \). If we take an outer function \(F \) in \(H^\infty \) such that \(|F| = e^{-\tau} \), then

\[Z^k\overline{q}Se^{\tau-i\tau} = \overline{F}h^2, \]

up to constant factors of modulus 1. Indeed, by Theorem 10 of [2], \(e^{\tau-i\tau} \) is outer in \(H^1 \), and \(Z^k\overline{q}S = G^2 \) is also outer in \(H^\infty \), so that the left hand side of (22) is outer in \(H^1 \). Furthermore, since \(F \) is outer in \(H^\infty \) and \(h \) is outer in \(H^2 \), the right hand side of (22) is also outer in \(H^1 \).

Now by the assumption on \(w \)

\[Z^k\overline{q}Se^{\tau-i\tau} = \overline{F}h^2. \]

Since an outer function is determined up to a constant factor by its modulus, (22) follows. By (22), \(S = \overline{F}h^2Z^{-k}qe^{-\tau}e^{i\tau} \) and \(S \geq 0 \), it follows that

\[\text{Arg} (\overline{F}h^2Z^{-k}qe^{-\tau}e^{i\tau}) = 0. \]

Hence for sufficiently small \(\varepsilon > 0 \),

\[|\text{Arg} (\overline{F}h^2Z^{-k}q)| = |s| \leq ||s|| < \pi/2 - \varepsilon \]

and

\[|F| = e^{-\tau} > \varepsilon. \]

If we put \(B = FqZ^{-1-k} \), then \(B \in H^\infty \) and

\[|\text{Arg} (Bh^2Z^{1-k})| = |\text{Arg} (\overline{F}h^2Z^{-k}q)| < \pi/2 - \varepsilon \]

\[|B| = |F| > \varepsilon. \]

The assertion follows from Proposition 3.

Corollary. In order for \(A \) and \(\overline{A}_n \) to be at positive angle in \(L^2(wdm) \), it is necessary and sufficient that \(w \) has the form

\[w = |P|^2e^{r+C\tau} \]

where \(P \) is a polynomial in \(Z \) of degree less than \(n \), \(r, s \in L^\infty(dm) \), \(||s|| < \pi/2 \) and \(Cs \) is the conjugate of \(s \).
EXAMPLE. Put \(S = \{(k, l) \in \mathbb{Z}^2 | k > 0\} \cup \{(0, l) \in \mathbb{Z}^2 | l \geq 0\} \). Let \(A = A(T^2) \) be the Dirichlet algebra of continuous functions on \(T^2 \) which are uniform limits of polynomials in \(e^{ikx}e^{il_2} \) where \((k, l) \in S\). Let \(m \) denote the normalized Haar measure on \(T^2 \). Then the Gleason part of \(m \) can be identified with \(\{(0, \alpha) \in \mathbb{C}^2 | |\alpha| < 1\} \) and is non-trivial. Wermer’s embedding function \(Z \) is given by \(Z(e^{ix}, e^{iy}) = e^{iy} \). In this case, \(A^\pi \) is the uniformly closed linear span of \(\{e^{ikx}e^{il_2} | (k, l) \in S\} \) and the function \(P \) in Theorem 6 is a polynomial in \(e^{iy} \) of degree less than \(n \).

REMARK. We used the setting such that \(A \) is a Dirichlet algebra and the Gleason part of the unique representing measure \(m \) is non-trivial since it is easier to work with. However, similar proofs will show that all results are valid for a setting such that \(A \) is a weak*-Dirichlet algebra on a given probability measure space \((X, m)\) and there exists a non-zero weak*-continuous multiplicative linear functional on \(A \) which is different from \(dm \) (for the relevant definition, see, Srinivasan and Wang [10]).

REFERENCES

COLLEGE OF GENERAL EDUCATION
Tôhoku University
Kawauchi, Sendai, 980 Japan.