REAL ANALYTIC SL(n, R) ACTIONS ON SPHERES

Fuichi Uchida*

(Received June 1, 1979)

0. Introduction. Let SL(n, R) denote the group of all n×n real matrices of determinant 1. In the previous paper [12], we classified real analytic SL(n, R) actions on the standard n-sphere for each n ≥ 3. In this paper we study real analytic SL(n, R) actions on the standard m-sphere for 5 ≤ n ≤ m ≤ 2n - 2. We shall show that such an action is characterized by a certain real analytic R× action on a homotopy (m - n + 1)-sphere. Here R× is the multiplicative group of all non-zero real numbers.

In Section 1 we construct a real analytic SL(n, R) action on the standard (n+k-1)-sphere from a real analytic R× action on a homotopy k-sphere satisfying a certain condition for each n+k ≥ 6. In Section 3 we state a structure theorem for a real analytic SL(n, R) action which satisfies a certain condition on the restricted SO(n) action, and in Section 5 we state a decomposition theorem and a classification theorem. In Section 6 we construct real analytic R× actions on the standard k-sphere. It can be seen that there are infinitely many (at least the cardinality of the real numbers) mutually distinct real analytic SL(n, R) actions on the standard m-sphere.

1. Construction. Let ψ: R× × Σ → Σ be a real analytic R× action on a real analytic closed manifold Σ which is homotopy equivalent to the k-sphere. Define a real analytic involution T of Σ by T(x) = ψ(-1, x) for x ∈ Σ. Put F = F(R×, Σ), the fixed point set. We say that the action ψ satisfies the condition (P) if
 (i) there exists a compact contractible k-dimensional submanifold X of Σ such that X ∪ TX = Σ and X ∩ TX = F,
 (ii) there exists a real analytic R× equivariant isomorphism j of R× × F onto an open set of Σ such that j(0, x) = x for x ∈ F. Here R× acts on R by the scalar multiplication.

Notice that F = F(T, Σ), the fixed point set of the involution T by the condition (i), and hence F is a real analytic (k-1)-dimensional closed submanifold of Σ. Define a map

* Supported by Grant-in-Aid for Scientific Research.
by \(f(u, x) = (u, j(1, x)) \) for \(u \in \mathbb{R}^n - 0, x \in F \). Then the map \(f \) is a real analytic \(SL(n, \mathbb{R}) \) equivariant isomorphism of \((\mathbb{R}^n - 0) \times F\) onto an open set of \((\mathbb{R}^n - 0) \times_\mathbb{R}(\Sigma - F)\), where \(SL(n, \mathbb{R}) \) acts naturally on \(\mathbb{R}^n, \mathbb{R}^{\times} \) acts on \(\mathbb{R}^n \) by the scalar multiplication and \(\mathbb{R}^{\times} \) acts on \(\Sigma \) by the given action \(\psi \). Here \((\mathbb{R}^n - 0) \times_\mathbb{R}(\Sigma - F)\) is the quotient of \((\mathbb{R}^n - 0) \times (\Sigma - F)\) obtained by identifying \((u, y)\) with \((t^{-1}u, \psi(t, y))\) for \(u \in \mathbb{R}^n - 0, y \in \Sigma - F, t \in \mathbb{R}^{\times}\). Put

\[
M(\psi, j) = \mathbb{R}^n \times F \sqcup \left((\mathbb{R}^n - 0) \times_\mathbb{R}(\Sigma - F)\right),
\]

which is the space formed from the disjoint union of \(\mathbb{R}^n \times F \) and \((\mathbb{R}^n - 0) \times_\mathbb{R}(\Sigma - F)\) by identifying \((u, x)\) with \(f(u, x)\) for \(u \in \mathbb{R}^n - 0, x \in F\). By the construction, it can be seen that the space \(M(\psi, j) \) is a compact Hausdorff space with \(SL(n, \mathbb{R}) \) action, and \(M(\psi, j) \) admits a real analytic structure so that the \(SL(n, \mathbb{R}) \) action is real analytic.

PROPOSITION 1.1. (a) Let \(j_1: \mathbb{R}\times F \to \mathbb{R}^{\times} \) be a real analytic \(\mathbb{R}^{\times} \) equivariant isomorphism of \(\mathbb{R}\times F \) onto an open set of \(\Sigma \) such that \(j_1(0, x) = x \) for \(x \in F \). Then \(M(\psi, j_1) \) is real analytically isomorphic to \(M(\psi, j) \) as \(SL(n, \mathbb{R}) \) manifolds.

(b) Suppose \(n \geq 1 \) and \(n + k \geq 6 \). Then \(M(\psi, j) \) is real analytically isomorphic to the standard \((n + k - 1)\)-sphere.

PROOF. It is easy to see that there is a real analytic function \(s: F \to \mathbb{R}^{\times} \) such that \(j_1(t, x) = j(s(x)t, x) \) for \(t \in \mathbb{R}, x \in F \). Let \(g \) be a real analytic automorphism of the disjoint union of \(\mathbb{R}^n \times F \) and \((\mathbb{R}^n - 0) \times_\mathbb{R}(\Sigma - F)\) defined by

\[
g(u, x) = (s(x)u, x) \quad \text{for} \quad u \in \mathbb{R}^n, \quad x \in F,
\]

\[
g(v, y) = (v, y) \quad \text{for} \quad v \in \mathbb{R}^n - 0, \quad y \in \Sigma - F.
\]

Then it is easy to see that \(g \) induces a real analytic \(SL(n, \mathbb{R}) \) equivariant isomorphism of \(M(\psi, j_1) \) onto \(M(\psi, j) \).

To show (b), we consider the restricted \(SO(n) \) action on \(M(\psi, j) \). We can assume \(j([0, \infty) \times F) \subset X \) by the condition (P). Put \(X_1 = X - j([0, 1) \times F) \). Let \(D^* \) denote the closed unit disk of \(\mathbb{R}^n \). Let \(\partial Y \) denote the boundary of a given manifold \(Y \). Then it can be seen that there exists an equivariant diffeomorphism

\[
M(\psi, j) = D^* \times F \sqcup \partial D^* \times X_1,
\]

as smooth \(SO(n) \) manifolds, where \(h: \partial D^* \times F \to \partial D^* \times \partial X_1 \) is a \(C^\infty \) diffeomorphism defined by \(h(u, x) = (u, j(1, x)) \) for \(u \in \partial D^*, x \in F \). Hence
$M(\psi, j)$ is C^∞ diffeomorphic to $\partial(D^* \times X_i)$. Here X_i is a compact contractible k-manifold; hence $\partial(D^* \times X_i)$ is simply connected for $n \geq 1$. Therefore $M(\psi, j)$ is C^∞ diffeomorphic to the standard $(n+k-1)$-sphere for $n+k \geq 6$ by the h-cobordism theorem (cf. Milnor [8, Theorem 9.1]). It is known by Grauert [3] and Whitney [13, Part III] that two real analytic paracompact manifolds are real analytically isomorphic if they are C^∞ diffeomorphic. Consequently, $M(\psi, j)$ is real analytically isomorphic to the standard $(n+k-1)$-sphere for $n+k \geq 6$. q.e.d.

REMARK. By the condition (P), it is shown that Σ is real analytically isomorphic to the standard k-sphere for $k \geq 5$ by the h-cobordism theorem.

2. Certain subgroups of $SL(n, R)$. As usual we regard $M_n(R)$ with the bracket operation $[A, B] = AB - BA$ as the Lie algebra of $GL(n, R)$. Let $\mathfrak{sl}(n, R)$ and $\mathfrak{so}(n)$ denote the Lie subalgebras of $M_n(R)$ corresponding to the subgroups $SL(n, R)$ and $SO(n)$ respectively. Then

$$\mathfrak{sl}(n, R) = \{ X \in M_n(R) : \text{trace } X = 0 \} ,$$
$$\mathfrak{so}(n) = \{ X \in M_n(R) : X \text{ is skew symmetric} \} .$$

Define certain linear subspaces of $\mathfrak{sl}(n, R)$ as follows:

$$\mathfrak{sl}(n-r, R) = \left\{ \begin{pmatrix} 0 & 0 \\ 0 & A \end{pmatrix} : A \text{ is } (n-r) \times (n-r) \text{ matrix of trace } 0 \right\} ,$$
$$\mathfrak{so}(n-r) = \mathfrak{so}(n) \cap \mathfrak{sl}(n-r, R) ,$$
$$\mathfrak{sym}(n-1) = \{ X \in \mathfrak{sl}(n-1, R) : X \text{ is symmetric} \} ,$$
$$a = \{ (a_{ij}) \in \mathfrak{sl}(n, R) : a_{ij} = 0 \text{ for } i \neq 1 \} ,$$
$$a^* = \{ (a_{ij}) \in \mathfrak{sl}(n, R) : a_{ij} = 0 \text{ for } j \neq 1 \} ,$$
$$b = \{ (a_{ij}) \in \mathfrak{sl}(n, R) : a_{ij} = 0 \text{ for } i \neq j, a_{22} = a_{33} = \cdots = a_{nn} \} .$$

Then

$$\mathfrak{sl}(n, R) = \mathfrak{sl}(n-1, R) \oplus a \oplus a^* \oplus b ,$$
$$\mathfrak{sl}(n-1, R) = \mathfrak{so}(n-1) \oplus \mathfrak{sym}(n-1)$$

as direct sums of vector spaces. Moreover we have

$$[a, a^*] = \mathfrak{sl}(n-1, R) \oplus b ,$$

(2.1) $[a, a] = [a^*, a^*] = [b, b] = [b, \mathfrak{sl}(n-1, R)] = 0 ,$
$$[a, b] = [a, \mathfrak{sl}(n-1, R)] = a , \quad [a^*, b] = [a^*, \mathfrak{sl}(n-1, R)] = a^* .$$

Let $SL(n-r, R)$ and $SO(n-r)$ denote the connected subgroups of $SL(n, R)$ corresponding to the Lie subalgebras $\mathfrak{sl}(n-r, R)$ and $\mathfrak{so}(n-r)$, respectively.
Let $\text{Ad}: \text{SL}(n,\mathbb{R}) \rightarrow \text{GL}(\mathfrak{sl}(n, \mathbb{R}))$ be the adjoint representation defined by $\text{Ad}(A)X = AXA^{-1}$ for $A \in \text{SL}(n,\mathbb{R})$, $X \in \mathfrak{sl}(n,\mathbb{R})$. Then the linear subspaces $\mathfrak{sl}(n-1,\mathbb{R})$, \mathfrak{a}, \mathfrak{a}^* and \mathfrak{b} are $\text{Ad}(\text{SL}(n-1,\mathbb{R}))$ invariant, and the linear subspaces $\mathfrak{so}(n-1)$ and $\mathfrak{sym}(n-1)$ are $\text{Ad}(\text{SO}(n-1))$ invariant. Moreover, the linear subspaces $\mathfrak{sym}(n-1)$, \mathfrak{a}, \mathfrak{a}^* and \mathfrak{b} are irreducible $\text{Ad}(\text{SO}(n-1))$ spaces respectively for each $n \geq 3$. Put

$$t(p, q) = \begin{cases}
0 & qx_2 \cdots qx_n \\
p x_2 & 0 \cdots 0 \\
0 & 0 \cdots 0 \\
q x_2 & \cdots & \cdots & \cdots & \cdots & \cdots \\
p x_n & 0 & \cdots & 0
\end{cases} : x_i \in \mathbb{R}$$

for $p, q \in \mathbb{R}$. Then $t(p, q)$ is an $\text{Ad}(\text{SO}(n-1))$ invariant linear subspace of $\mathfrak{a} \oplus \mathfrak{a}^*$, and we have

$$[t(p, q), \mathfrak{sym}(n-1)] = [t(p, q), \mathfrak{b}] = t(p, -q), \quad (2.2)$$

$$[t(p, q), t(p, q)] = \begin{cases} 0 & \text{for } pq = 0 \\
\mathfrak{so}(n-1) & \text{for } pq \neq 0.
\end{cases}$$

Lemma 2.3. Suppose $n \geq 3$. Let \mathfrak{g} be a proper Lie subalgebra of $\mathfrak{sl}(n, \mathbb{R})$ which contains $\mathfrak{so}(n-1)$. Then \mathfrak{g} is one of the following: $\mathfrak{so}(n-1)$, $\mathfrak{so}(n-1) \oplus \mathfrak{b}$, $\mathfrak{so}(n-1) \oplus \mathfrak{a}$, $\mathfrak{so}(n-1) \oplus \mathfrak{a}^*$, $\mathfrak{so}(n-1) \oplus t(p, q)$ for $pq \neq 0$, $\mathfrak{so}(n-1) \oplus \mathfrak{a} \oplus \mathfrak{b}$, $\mathfrak{so}(n-1) \oplus \mathfrak{a}^* \oplus \mathfrak{b}$, $\mathfrak{sl}(n-1, \mathbb{R})$, $\mathfrak{sl}(n-1, \mathbb{R}) \oplus \mathfrak{b}$, $\mathfrak{sl}(n-1, \mathbb{R}) \oplus \mathfrak{a}$, $\mathfrak{sl}(n-1, \mathbb{R}) \oplus \mathfrak{a}^*$, $\mathfrak{sl}(n-1, \mathbb{R}) \oplus \mathfrak{a} \oplus \mathfrak{b}$, $\mathfrak{sl}(n-1, \mathbb{R}) \oplus \mathfrak{a}^* \oplus \mathfrak{b}$.

Proof. Since \mathfrak{g} contains $\mathfrak{so}(n-1)$, \mathfrak{g} is an $\text{Ad}(\text{SO}(n-1))$ invariant linear subspace of $\mathfrak{sl}(n, \mathbb{R})$. Hence we have $\mathfrak{g} = \mathfrak{so}(n-1) \oplus (\mathfrak{g} \cap \mathfrak{sym}(n-1)) \oplus (\mathfrak{g} \cap (\mathfrak{a} \oplus \mathfrak{a}^*)) \oplus (\mathfrak{g} \cap \mathfrak{b})$ as a direct sum of $\text{Ad}(\text{SO}(n-1))$ invariant linear subspaces. Since $\mathfrak{sym}(n-1)$ is irreducible, we have $\mathfrak{g} \cap \mathfrak{sym}(n-1) = 0$ or $\mathfrak{sym}(n-1)$. Since \mathfrak{g} is a proper Lie subalgebra of $\mathfrak{sl}(n, \mathbb{R})$, \mathfrak{g} does not contain $\mathfrak{a} \oplus \mathfrak{a}^*$ by (2.1). Suppose $n \geq 4$. Then we derive that $\mathfrak{g} \cap (\mathfrak{a} \oplus \mathfrak{a}^*)$ coincides with certain $t(p, q)$. If \mathfrak{g} contains $\mathfrak{sym}(n-1)$, then (2.2) implies that $\mathfrak{g} \cap (\mathfrak{a} \oplus \mathfrak{a}^*) = 0$, \mathfrak{a} or \mathfrak{a}^*. Now we can prove the lemma for $n \geq 4$ by a routine work from (2.1) and (2.2). The proof for $n = 3$ is similar, so we omit the detail.

Remark. Let $G(p, q)$ denote the connected Lie subgroup of $\text{SL}(n, \mathbb{R})$ corresponding to the Lie subalgebra $\mathfrak{so}(n-1) \oplus t(p, q)$ for $pq \neq 0$. If $pq < 0$, then $G(p, q)$ is conjugate to $G(1, -1) = \text{SO}(n)$. If $pq > 0$, then $G(p, q)$ is conjugate to $G(1, 1)$, which is non-compact.
LEMMA 2.4. (i) Assume that \(g \) is one of the following:
\[
\mathfrak{so}(n-1), \mathfrak{so}(n-1) \oplus b, \mathfrak{so}(n-1) \oplus a, \mathfrak{so}(n-1) \oplus a \oplus b,
\]
\[
\mathfrak{so}(n-1) \oplus \mathfrak{fr}(p, q) \text{ for } pq \neq 0, \mathfrak{sl}(n-1, R), \mathfrak{sl}(n-1, R) \oplus b.
\]
Then \(\mathfrak{so}(n) \cap \text{Ad}(X_1)g = \mathfrak{so}(n-2) \).

(ii) Assume that \(g \) is one of the following:
\[
\mathfrak{so}(n-1)(+a^*), \mathfrak{so}(n-1)(+a^*+b).
\]
Then \(\mathfrak{so}(n) \cap \text{Ad}(X_{-1})g = \mathfrak{so}(n-2) \).

PROOF. Since \(\mathfrak{so}(n) \cap \text{Ad}(X_1)g = \{ A \in \mathfrak{so}(n) : X_1^{-1}AX_1 \in g \} \), we have the desired equations by a routine work from the following relation:

\[
\begin{pmatrix}
a_{11} + a_{12} & a_{12} & a_{13} & \cdots & a_{1n} \\
a_{21} + a_{22} - a_{11} - a_{12} & a_{22} - a_{12} & a_{23} - a_{13} & \cdots & a_{2n} - a_{1n} \\
a_{31} + a_{32} & a_{32} & a_{33} & \cdots & a_{3n} \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
a_{n1} + a_{n2} & a_{n2} & a_{n3} & \cdots & a_{nn}
\end{pmatrix}
\]

Let \(L(n), L^*(n), N(n) \) and \(N^*(n) \) denote the connected Lie subgroups of \(SL(n, R) \) corresponding to the Lie subalgebras \(\mathfrak{sl}(n-1, R) \oplus a, \mathfrak{sl}(n-1, R) \oplus a^* \), \(\mathfrak{sl}(n-1, R) \oplus a \oplus b \) and \(\mathfrak{sl}(n-1, R) \oplus a^* \oplus b \), respectively. Then these are closed subgroups of \(SL(n, R) \).

PROPOSITION 2.5. Suppose \(n \geq 3 \). Let \(M \) be an \(SL(n, R) \) space. Assume that the restricted \(SO(n) \) action on \(M \) has at most two orbit types \(SO(n)/SO(n-1) \) and \(SO(n)/SO(n) \). Then the identity component of an isotropy group of the \(SL(n, R) \) action on \(M \) is conjugate to one of the following: \(L(n), L^*(n), N(n) N^*(n) \) and \(SL(n, R) \).

PROOF. Let \(g \) be the Lie algebra corresponding to an isotropy group. By the assumption on the restricted \(SO(n) \) action, we see that \(\text{Ad}(x)g \) contains \(\mathfrak{so}(n-1) \) for some \(x \in SL(n, R) \). Such a Lie subalgebra is determined by Lemma 2.3. Moreover, we can derive \(\mathfrak{so}(n) \cap \text{Ad}(y)g \neq \mathfrak{so}(n-2) \) for any \(y \in SL(n, R) \) by the assumption on the restricted \(SO(n) \) action. Hence we see that \(g \) is one of the following up to conjugation: \(\mathfrak{sl}(n-1, R) \oplus c, \mathfrak{sl}(n-1, R) \oplus a^*, \mathfrak{sl}(n-1, R) \oplus a \oplus b, \mathfrak{sl}(n-1, R) \oplus a^* \oplus b, \mathfrak{sl}(n, R) \) by Lemma 2.3 and Lemma 2.4. On the other hand, it is easy
to see that the restricted $SO(n)$ actions on the homogeneous spaces $SL(n, \mathbb{R})/L(n)$, $SL(n, \mathbb{R})/L^*(n)$, $SL(n, \mathbb{R})/N(n)$ and $SL(n, \mathbb{R})/N^*(n)$ have only one orbit type $SO(n)/SO(n-1)$ respectively. q.e.d.

3. Structure theorem. Let $\phi: G \times M \to M$ be a real analytic G action. Let \mathfrak{g} be the Lie algebra of all left invariant vector fields on G. Let $L(M)$ denote the Lie algebra of all real analytic vector fields on M. Then we can define a Lie algebra homomorphism $\phi^+: \mathfrak{g} \to L(M)$ as follows (cf. Palais [10, Chapter II, Theorem II]):

$$\phi^+(X)_q(f) = \lim_{t \to 0} \frac{f(\phi(\exp(-tX), q)) - f(q)}{t}$$

for $X \in \mathfrak{g}$, $q \in M$ and a real analytic function f defined on a neighborhood of q. It is easy to see that $\phi^+(X)_q = 0$ iff q is a fixed point of the one-parameter subgroup $\{\exp tX\}$. For each subgroup H of G, let $F(H, M)$ denote the fixed point set of the restricted H action of ϕ. Then $F(H, M)$ is a closed subset of M.

Lemma 3.1. Let $\phi: SL(n, \mathbb{R}) \times M \to M$ be a real analytic action. Let $p \in F(SL(n, \mathbb{R}), M)$. Suppose that there exists an analytic system of coordinates $(U; u_1, \cdots, u_m)$ with origin at p, such that

$$(*) \quad \phi^+(x_{ij})_q = -\sum_{i,j=1}^n x_{ij}u_j(q)\partial/\partial u_i$$

for $(x_{ij}) \in \mathfrak{sl}(n, \mathbb{R})$, $q \in U$. Then, (i) there exists an open neighborhood V of p in $F(SL(n, \mathbb{R}), M)$ and there exists an analytic isomorphism h of $\mathbb{R}^n \times V$ onto an open set of M such that

(a) $h(0, v) = v$ for $v \in V$,
(b) $h(gu, v) = \phi(g, h(u, v))$ for $g \in SL(n, \mathbb{R})$, $u \in \mathbb{R}^n$, $v \in V$.

Moreover, (ii) if pairs (V_1, h_1) and (V_2, h_2) satisfy the conditions (a), (b), then

$$h_1(\mathbb{R}^n \times V_1) \cap h_2(\mathbb{R}^n \times V_2) = h_1(\mathbb{R}^n \times (V_1 \cap V_2)),$$

and there exists a unique real analytic real valued function f on $V_1 \cap V_2$ such that $h_1(u, v) = h_2(f(v)u, v)$ for $u \in \mathbb{R}^n$, $v \in V_1 \cap V_2$.

Proof. The assumption $(*)$ implies $F(SL(n, \mathbb{R}), M) \cap U = \{q \in U: u_i(q) = \cdots = u_n(q) = 0\}$. Define a real analytic isomorphism k of U onto an open set of \mathbb{R}^n by $k(q) = (u_1(q), \cdots, u_m(q))$. There is a positive real number r such that $D^r_r \times D^{n-r}_r \subset k(U)$, namely $(u_1, \cdots, u_m) \in k(U)$ for $(u_1, \cdots, u_m) \in D^r_r \times (u_{n+1}, \cdots, u_m) \in D^{n-r}_r$. Here we denote $D^r_r = \{(v_1, \cdots, v_n) \in \mathbb{R}^n: v_1^2 + \cdots + v_n^2 < r^2\}$. Consider the following curves

$$a(t) = a(t; X, u, v) = k(\phi(\exp tX, k^{-1}(u, v))) \quad \text{and} \quad b(t) = b(t; X, u, v) = ((\exp tX)u, v)$$
for $X \in \mathfrak{so}(n, \mathbb{R})$, $u \in D^*_r$, $v \in D^m_{-n}$. The curve $b(t)$ is defined for each $t \in \mathbb{R}$, the curve $a(t)$ is defined on an interval $(-t_1, t_2)$ for some positive real numbers t_1, t_2. Put $X = (x_{ij})$, $a(t) = (a_1(t), \ldots, a_m(t))$ and $b(t) = (b_1(t), \ldots, b_m(t))$. Then it follows from the assumption (*) that

$$
\left(\frac{d}{dt}\right)a_i(t) = \sum_{j=1}^n x_{ij} a_j(t) \quad \text{for} \quad 1 \leq i \leq n,
$$

$$
\left(\frac{d}{dt}\right)a_i(t) = 0 \quad \text{for} \quad n < i \leq m.
$$

On the other hand,

$$
\left(\frac{d}{dt}\right)b_i(t) = \sum_{j=1}^n x_{ij} b_j(t) \quad \text{for} \quad 1 \leq i \leq n,
$$

$$
\left(\frac{d}{dt}\right)b_i(t) = 0 \quad \text{for} \quad n < i \leq m
$$

by the definition of $b(t)$. Since $a(0) = b(0)$, we can derive that

$$
(**) \quad a(t; X, u, v) = b(t; X, u, v)
$$

on the interval $(-t_1, t_2)$. Put $u_0 = (r/2, 0, \ldots, 0) \in D^r$. Then it follows from the equation (**) that the identity component of an isotropy group at $k^{-1}(u_0, v)$ coincides with $L(n)$ for each $v \in D^m_{-n}$. Hence we can define a map $h': R^n \times D^m_{-n} \rightarrow M$ by

$$
h'(u, v) = \begin{cases} k^{-1}(0, v) & \text{for } u = 0, \\ \phi(g, k^{-1}(u_0, v)) & \text{for } u = gu_0, \quad g \in SL(n, \mathbb{R}). \end{cases}
$$

First we shall show that $kh' = \text{identity on } D^*_r \times D^m_{-n}$. Let $u \in D^r$ and $u \neq 0$. Then u can be expressed as follows: $u = (\exp X_1 \cdot \exp X_2)u_0$ for $X_1 \in \mathfrak{so}(n)$, and X_2 is a diagonal matrix with diagonal components $c, -c, 0, \ldots, 0$ for $c \in \mathbb{R}$. The equation (**) implies that $k(\phi(\exp tX_2, k^{-1}(u_0, v))) = ((\exp tX_2)u_0, v)$ for $|t| \leq 1$ and $k(\phi(\exp tX_1, k^{-1}((\exp X_2)u_0, v))) = ((\exp tX_1)(\exp X_2)u_0, v)$ for $t \in \mathbb{R}$. Then we have $kh' = \text{identity on } D^*_r \times D^m_{-n}$. Since $k: U \rightarrow k(U)$ is a real analytic isomorphism, it follows that the restriction of h' to $D^*_r \times D^m_{-n}$ is a real analytic isomorphism of $D^*_r \times D^m_{-n}$ onto an open set of M. On the other hand, the restriction of h' to $(R^n - 0) \times D^m_{-n}$ is real analytic by definition. Moreover, the map h' is $SL(n, \mathbb{R})$ equivariant by definition. Hence the map h' is a real analytic local isomorphism at each point of $R^*_r \times D^m_{-n}$.

Now we shall show that h' is an injection. Assume that $h'(g, u_0, v_1) = h'(g, u_0, v_2)$ for some $g \in SL(n \in \mathbb{R})$, $v_1 \in D^m_{-n}$. Since h' is equivariant, we have $k^{-1}(u_0, v_1) = \phi(g, k^{-1}(u_0, v_2))$. Put $g = g_1^{-1}g_2$. Let L_i be the identity component of the isotropy group at $k^{-1}(u_0, v_i)$. Then $L_i = gL_0g^{-1}$ and $L_i = L(n)$ by the assumption (*). Hence $g \in NL(n)$, the normalizer of $L(n)$ in $SL(n, \mathbb{R})$. The equation (**) implies that $k(\phi((x_{ij}), k^{-1}(u_0, v_2))) = \phi(g_1^{-1}g_2, k^{-1}(u_0, v_2))$.
\[(x_{ij}, u_0, v) \quad \text{for} \quad v \in D_{n}^{-n}, \quad (x_{ij}) \in NL(n), \quad 0 < |x_{ii}| < 2. \] We can choose \(g \) or \(g^{-1} \) as \((x_{ij})\) such that \(0 < |x_{ii}| < 2. \) It follows that \(v_1 = v_2 \) and \(g = g_1^{-1}g_2 \in L(n). \) Hence \(g_0u_0 = g_2u_0. \) Therefore \(h' \) is an injection. The map \(v \rightarrow h'(0, v) \) is a real analytic isomorphism of \(D_{n}^{-n} \) onto an open neighborhood \(V \) of \(p \) in \(F(SL(n, R), M). \)

Define a map \(h: R^n \times V \rightarrow M \) by \(h(u, v) = h'(u, k(v)) \) for \(u \in R^n, \) \(v \in V. \) Then it is easy to see that \(h \) is a real analytic isomorphism of \(R^n \times V \) onto an open set of \(M \) satisfying the conditions (a), (b).

Next, let \(h_i: R^n \times V_i \rightarrow M \) be a real analytic into isomorphism satisfying the conditions (a), (b) for \(i = 1, 2. \) Put \(e = (1, 0, \ldots, 0) \in R^n. \) Assume that \(\phi(g_i, h_i(e, v_i)) = \phi(g_2, h_2(e, v_2)) \) for some \(g_i \in SL(n, R), \) \(v_i \in V_i. \) Then \(h_i(e, v_i) = \phi(g_i^{-1}g_2, h_2(e, v_2)), \) and hence \(g_i^{-1}g_2 \in NL(n), \) because the isotropy group at \(h_i(e, v_i) \) coincides with \(L(n). \) Put \(x_i \) the diagonal matrix with diagonal components \(t, t^{-1}, 1, \ldots, 1. \) Then \(x_t \in NL(n). \) Since \(h_i(te, v_i) = \phi(x_t, h_i(e, v_i)) \) and \(NL(n)/L(n) \) is abelian, it follows that \(h_i(te, v_i) = \phi(g_i^{-1}g_2, h_2(te, v_2)) \) for \(t \neq 0. \) Let \(t \rightarrow 0. \) Then \(v_i = \phi(g_i^{-1}g_2, v_2) = v_2. \) It follows that \(h_i(R^n \times V_i) \cap h_2(R^n \times V_2) \) is contained in \(h_i(R^n \times V) \) for \(V = V_i \cap V_2. \) Since \(h_i(R^n \times V) \) is a smallest open \(SL(n, R) \) invariant neighborhood of \(V = h_i(0 \times V), \) we can derive that \(h_i(R^n \times V) = h_2(R^n \times V), \) and hence \(h_i(R^n \times V_i) \cap h_2(R^n \times V_2) = h_i(R^n \times V). \)

From the above argument, there exists a unique real analytic function \(f: V \rightarrow R \) such that \(h_i(e, v) = h_2(f(v)e, v) \) for \(v \in V. \) Then \(h_i(u, v) = h_2(f(v)u, v) \) for \(u \in R^n, \) \(v \in V, \) because \(h_1 \) and \(h_2 \) are \(SL(n, R) \) equivariant. q.e.d.

Remark 3.2. Let \(M \) be a real analytic paracompact manifold. Then \(M \) admits a real analytic Riemannian metric, because \(M \) is real analytically isomorphic to a real analytic closed submanifold of \(R^n \) (cf. Grauert [3, Theorem 3]). Suppose that \(M \) admits a real analytic action of a compact Lie group \(H. \) Then \(M \) admits a real analytic \(H \) invariant Riemannian metric, by averaging a given real analytic Riemannian metric. In particular, each connected component of \(F(H, M) \) is a real analytic closed submanifold of \(M. \)

Lemma 3.3. Suppose \(n \geq 3. \) Let \(\phi: SL(n, R) \times M \rightarrow M \) be a real analytic \(SL(n, R) \) action on a connected paracompact \(m \)-manifold. Suppose that the restricted \(SO(n) \) action of \(\phi \) has just two orbit types \(SO(n)/SO(n-1) \) and \(SO(n)/SO(n). \) Then

(a) each connected component of \(F(SO(n), M) \) is \((m-n)\)-dimensional,
(b) \(F(SO(n-1), M) \) is connected and \((m-n+1)\)-dimensional,
(c) \(F(SO(n-1), M) \) coincides with either \(F(L(n), M) \) or \(F(L^*(n), M). \)
Moreover, if $F(SO(n-1), M) = F(L(n), M)$, then there is an equivariant decomposition:

$$M - F = SL(n, R) \times F(L(n), M - F),$$

where $F = F(SL(n, R), M) = F(SO(n), M)$.

Proof. It follows from the assumption that the isotropy representation at a point of $F(SO(n), M)$ is equivalent to $\rho_n \oplus$ trivial. Here ρ_n is the canonical representation of $SO(n)$. Hence (a) follows. Put $X = F(SO(n-1), M) - F(SO(n), M)$. There is an equivariant decomposition:

$$M - F = SO(n)/SO(n-1) \times X,$$

where $W = NSO(n-1)/SO(n-1) = \mathbb{Z}_2$. In particular, $\dim X = m - n + 1$. Let $\pi: M \to M^* = SO(n) \setminus M$ be the canonical projection to the orbit space M^*. Then $M^* = \pi(F(SO(n-1), M))$ by the assumption. Put g_0 the diagonal matrix with diagonal components $-1, -1, 1, \ldots, 1$. Define a map $T: F(SO(n-1), M) \to F(SO(n-1), M)$ by $T(x) = \phi(g_0, x)$. Then T is an involution on $F(SO(n-1), M)$ and the fixed point set agrees with $F(SO(n), M)$. Then orbit space $T \setminus F(SO(n-1), M)$ is naturally homeomorphic to a connected space M^*. Let Y be a connected component of $F(SO(n-1), M)$ such that $Y \cap F(SO(n), M)$ is non-empty. Then $TY = Y$ and the orbit space $T \setminus Y$ is a connected component of $T \setminus F(SO(n-1), M)$. Hence $Y = F(SO(n-1), M)$ is connected. Hence (b) follows. By the assumption, Lemma 2.3 and Proposition 2.5, we have the following:

$$F(SO(n-1), M) = F(L(n), M) \cup F(L^*(n), M),$$

$$F(SO(n), M) = F(L(n), M) \cap F(L^*(n), M) = F(SL(n, R), M).$$

It follows from the above argument that X has at most two connected components. If X is connected, then it is easy to see that $F(SO(n-1), M)$ coincides with either $F(L(n), M)$ or $F(L^*(n), M)$. Suppose that X has two connected components X_1 and X_2. Then $TX_1 = X_2$. Since $g_0L(n)g_0^{-1} = L(n)$ and $g_0L^*(n)g_0^{-1} = L^*(n)$, we see that if X_1 is contained in $F(L(n), M)$ (resp. $F(L^*(n), M)$), then X_2 is also contained in $F(L(n), M)$ (resp. $F(L^*(n), M)$). Hence (c) follows.

Suppose now that $F(SO(n-1), M) = F(L(n), M)$. Consider the following commutative diagram:

$$\begin{array}{cccc}
SO(n) \times X & \xrightarrow{i \times 1} & SL(n, R) \times X \\
| \downarrow \pi & & \downarrow \pi' \\
SO(n) \times X & \xrightarrow{\phi_1} & M - F & \xleftarrow{\phi_2} \\
| \phi_1 \downarrow & & \phi_2 \downarrow & \phi_2 \downarrow \\
SO(n) \times X & \xleftarrow{\phi_1'} & SL(n, R) \times X \\
| \phi_2 \downarrow & & \phi_2 \downarrow \\
& & \end{array}$$
Here \(X = F(SO(n-1), M) - F(SO(n), M) = F(L(n), M) - F(SL(n, R), M) \); \(\pi, \pi' \) are the natural projections; \(\phi, \phi' \) are the restrictions of the map \(\phi; \phi', \phi' \) are the induced maps. Then \(\phi'_* \) is an \(SO(n) \) equivariant real analytic isomorphism. Since \(SL(n, R) = SO(n) \cdot N(n) \), it is easy to see that the map \(j \) is a surjection. Here the group \(N(n) \) is defined in Section 2. It follows that \(\phi'_* \) is an \(SL(n, R) \) equivariant real analytic isomorphism.

We require the following result due to Guillemin and Sternberg [4]:

Lemma 3.4. Let \(\mathfrak{g} \) be a real semi-simple Lie algebra and let \(\rho: \mathfrak{g} \to L(M) \) be a Lie algebra homomorphism of \(\mathfrak{g} \) into a Lie algebra of real analytic vector fields on a real analytic m-manifold \(M \). Let \(p \) be a point at which the vector fields in the image \(\rho(\mathfrak{g}) \) have common zero. Then there exists an analytic system of coordinates \((U; u_1, \cdots, u_m)\), with origin at \(p \), in which all of the vector fields in \(\rho(\mathfrak{g}) \) are linear. Namely, there exists \(a_{ij} \in g^* = \text{Hom}_R(\mathfrak{g}, R) \) such that

\[
\rho(X)_q = -\sum_{i,j} a_{ij}(X) u_j(q) \frac{\partial}{\partial u_i} \quad \text{for} \quad X \in \mathfrak{g}, \quad q \in U.
\]

Remark 3.5. The correspondence \(X \to (a_{ij}(X)) \) defines a Lie algebra homomorphism of \(\mathfrak{g} \) into \(\mathfrak{gl}(m, R) \). Let \(\mathfrak{P} = (p_{ij}) \in GL(m, R) \). Define an analytic system of coordinates \((U; v_1, \cdots, v_m)\) by \(v_i(q) = \sum_{j=1}^m p_{ij} u_j(q), \quad q \in U \). Then \(\rho(X)_q = -\sum_{i,j} b_{ij}(X) v_j(q) \frac{\partial}{\partial v_i} \) for \(X \in \mathfrak{g}, \quad q \in U \). Here \(b_{ij}(X) = \rho(a_{ij}(X)) \mathfrak{P}^{-1} \).

Lemma 3.6. Suppose \(n \geq 3 \). Let \(\phi: SL(n, R) \times M \to M \) be a real analytic action on m-manifold. Suppose that the restricted \(SO(n) \) action of \(\phi \) has just two orbit types \(SO(n)/SO(n-1) \) and \(SO(n)/SO(n) \). Suppose \(F(SO(n-1), M) = F(L(n), M) \). Then for each \(p \in F(SL(n, R), M) \) there exists an analytic system of coordinates \((U; u_1, \cdots, u_m)\), with origin at \(p \), such that

\[
\phi^*(x_{ij})(q) = -\sum_{i,j=1}^n x_{ij} u_j(q) \frac{\partial}{\partial u_i} \quad \text{for} \quad (x_{ij}) \in \mathfrak{sl}(n, R), \quad q \in U.
\]

Proof. By Lemma 3.4, there exists an analytic system of coordinates \((U; v_1, \cdots, v_m)\) with origin at \(p \) and there exists \(a_{ij} \in \mathfrak{sl}(n, R)^* \) such that \(\phi^*(X)_q = -\sum_{i,j=1}^m a_{ij}(X) v_j(q) \frac{\partial}{\partial v_i} \) for \(X \in \mathfrak{sl}(n, R), \quad q \in U \). Then \(F(SO(n), M) \cap U = \{ q \in U: \phi^*(X)_q = 0 \text{ for } X \in \mathfrak{s}o(n) \} = \{ q \in U: \sum_{i=1}^n a_{ij}(X) v_j(q) = 0 \text{ for } X \in \mathfrak{s}o(n), \quad 1 \leq i \leq m \} \). Since \(\dim F(SO(n), M) = m - n \) by Lemma 3.3 (a), we can assume \(F(SO(n), M) \cap U = \{ q \in U: v_i(q) = \cdots = v_m(q) = 0 \} \) by Remark 3.5. Then \(a_{ij}(X) = 0 \) for \(n + 1 \leq j \leq m, \quad 1 \leq i \leq m \) for each \(X \in \mathfrak{sl}(n, R) \), because \(F(SO(n), M) = F(SL(n, R), M) \) by Lemma 3.3. Therefore
fore the representation $X \to (a_{ij}(X))$ of $\mathfrak{sl}(n, \mathbb{R})$ has $(m - n)$-dimensional trivial subspace. It is well known that any real representation of $\mathfrak{sl}(n, \mathbb{R})$ is completely reducible (cf. Humphreys [6, Section 6]). Hence the representation $X \to (a_{ij}(X))$ is a direct sum of an n-dimensional representation and $(m - n)$-dimensional trivial representation. It is known that an n-dimensional real representation of $\mathfrak{sl}(n, \mathbb{R})$ is equivalent to the canonical representation $X \to X$ or the contragredient representation $X \to -\otimes X$. By Remark 3.5, there exists an analytic system of coordinates $(U; u_1, \cdots, u_m)$, with origin at p, such that

$$\phi^+((x_{ij}))_q = -\sum_{i,j=1}^n x_{ij} u_j(q) \frac{\partial}{\partial u_i}$$

or

$$\phi^+((x_{ij}))_q = \sum_{i,j=1}^n x_{ij} u_j(q) \frac{\partial}{\partial u_i}$$

for $(x_{ij}) \in \mathfrak{sl}(n, \mathbb{R})$, $q \in U$. The case (b) contradicts the assumption $F(SO(n-1), M) = F(L(n), M)$. q.e.d.

Theorem 3.7. Suppose $n \geq 3$. Let $\phi: SL(n, \mathbb{R}) \times M \to M$ be a real analytic action on a connected paracompact m-manifold. Suppose that the restricted $SO(n)$ action of ϕ has just two orbit types $SO(n)/SO(n-1)$ and $SO(n)/SO(n)$. Suppose $F(SO(n-1), M) = F(L(n), M)$. Put $F = F(SL(n, \mathbb{R}), M)$. Then (i) there exists a real analytic left principal R^\times bundle $p: E \to F$, and there exists a real analytic isomorphism h of $R^n \times_{R^\times} E$ onto an open set of M such that

(a) $h(0, u) = p(u)$ for $u \in E$

(b) $h(gx, u) = \phi(g, h(x, u))$ for $g \in SL(n, \mathbb{R})$, $x \in R^n$, $u \in E$.

Moreover, (ii) if there exists a real analytic left principal R^\times bundle $p': E' \to F$ and if there exists a real analytic isomorphism h' of $R^n \times_{R^\times} E'$ onto an open set of M such that

(a') $h'(0, u') = p'(u')$ for $u' \in E'$

(b') $h'(gx, u') = \phi(g, h'(x, u'))$ for $g \in SL(n, \mathbb{R})$, $x \in R^n$, $u' \in E'$,

then there exists a real analytic R^\times bundle isomorphism $f: E \to E'$ such that $h(x, u) = h'(x, f(u))$ for $x \in R^n$, $u \in E$.

Proof. From Lemma 3.1 and Lemma 3.6, there exists an open covering $\{V_\alpha, \alpha \in A\}$ of F and there exists a real analytic $SL(n, \mathbb{R})$ equivariant isomorphism h_α of $R^n \times V_\alpha$ onto an open set of M for each $\alpha \in A$, such that $h_\alpha(0, v) = v$ for $v \in V_\alpha$. Put $U = \bigcup_{\alpha \in A} h_\alpha(R^n \times V_\alpha)$. Then U is an $SL(n, \mathbb{R})$ invariant open neighborhood of F in M. Put $E = F(L(n)$,
156 F. UCHIDA

$U - F$), and define $k_a : R^x \times V_a \to E$ by $k_a(t, v) = h_a(t e, v)$ for $t \in R^x, v \in V_a$. Here $e = (1, 0, \ldots, 0) \in R^n$. The group $NL(n)/L(n) = R^x$ acts naturally on E, and the map k_a is R^x equivariant. It follows from Lemma 3.1 that $E = \bigcup_{a \in A} k_a(R^x \times V_a)$ and $k_a(R^x \times V_a) \cap k_b(R^x \times V_b) = k_a(R^x \times (V_a \cap V_b))$ for $a, b \in A$, and there exists a unique real analytic function $g_{a b} : V_a \cap V_b \to R^x$ such that $k_b(t, v) = k_a(g_{a b}(v)t, v)$ for $t \in R^x, v \in V_a \cap V_b$.

Define $p : E \to F$ by $p k_a(t, v) = v$ for $t \in R^x, v \in V_a$. This is a desired real analytic left principal R^x bundle. We can define a map $h : R^x \times R^x E \to M$ by $h(x, k_a(t, v)) = h_a(tx, v)$ for $x \in R^x, t \in R^x, v \in V_a$. The map h is a real analytic $SL(n, R)$ equivariant isomorphism onto U. This is a desired map. Suppose finally that there exists a real analytic left principal R^x bundle $p' : E' \to F$ and there exists a real analytic isomorphism $h' : R^x \times R^x E' \to R^x \times R^x E'$ onto an open set of M, satisfying the conditions (a'), (b'). It is easy to see from Lemma 3.1 (ii) that image $h = U = image h'$. It follows that there exists a unique $SL(n, R)$ equivariant real analytic isomorphism $f : R^x \times E \to R^x \times E'$ such that $h(x, u) = h'(f(x, u))$ for $x \in R^x, u \in E$. Considering the fixed point sets of the restricted $L(n)$ action, we have a real analytic R^x equivariant isomorphism $f : E \to E'$ such that $f(te, u) = (te, f(u))$ for $t \in R$, $u \in E$. Then $f : E \to E'$ is a bundle isomorphism of principal R^x bundles, because $p(u) = h(0, u) = h'(f(0, u)) = h'(0, f(u)) = p'(f(u))$ for $u \in E$.

4. Smooth SO(n) actions on homotopy spheres. First we state the following two lemmas of which proofs are given in Section 7.

Lemma 4.1. Suppose $n \geq 5$. Let G be a closed connected proper subgroup of $O(n)$ such that $\dim O(n)/G \leq 2n - 2$. Then it is one of the following listed in Table 1 up to an inner automorphism of $O(n)$. Here

$\rho_k : SO(k) \to O(k), \mu_k : U(k) \to O(2k), \mu_k^* : SU(k) \to O(2k)$

are the canonical inclusions, θ^k is the trivial representation of degree k, and Δ, ω, β are irreducible representations, respectively.

Lemma 4.2. Suppose $5 \leq n \leq k \leq 2n - 2$. Then an orthogonal non-trivial representation of $SO(n)$ of degree k is equivalent to $\rho_n \oplus \theta^{k-n}$ by an inner automorphism of $O(k)$.

Now we shall prove the following result.

Lemma 4.3. Suppose $5 \leq n \leq k \leq 2n - 2$. Let Σ^k be a homotopy k-sphere with a non-trivial smooth $SO(n)$ action. Then the principal
isotropy type is \((SO(n-1))\) and the fixed point set \(F(SO(n), \Sigma^k)\) is non-empty.

Let us start with some observations. In the following, let \(M\) be a closed connected \(k\)-dimensional manifold with a non-trivial smooth \(SO(n)\) action, let \((H)\) be the principal isotropy type, and suppose \(5 \leq n \leq k \leq 2n - 2\). Denote by \(H^0\) the identity component of \(H\).

Observation 4.4. If \(F(SO(n), M)\) is non-empty, then \((H) = (SO(n-1))\). This is a direct consequence of Lemma 4.2, by considering the isotropy representation at a fixed point.

Observation 4.5. Suppose that \(M\) is 2-connected and the \(SO(n)\) action is transitive. Then \(M = SO(n)/SO(n-2)\) or \(M = SO(5)/\beta SO(3)\). This is a direct consequence of Lemma 4.1.

Observation 4.6. Suppose that the principal isotropy type \((H)\) is one of the following listed in Table 2. Then \(M\) is not 3-connected.

Proof. Since \(F(SO(n), M)\) is empty by Observation 4.4 and \(H^0\) is a proper maximal connected subgroup of \(SO(n)\) by Lemma 4.1, there is an equivariant decomposition: \(M = SO(n)/H^0 \times_w F(H^0, M)\), where \(W = N(H^0)/H^0\) is a finite group. If \(M\) is simply connected, then \(M = SO(n)/\)
\(H^0 \times F \) and it is not 3-connected, where \(F \) is a connected component of \(F(H^0, M) \).

Table 2

<table>
<thead>
<tr>
<th>(n)</th>
<th>(H^0)</th>
<th>(\pi_1(\text{SO}(n)/H^0))</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>Spin(7)</td>
<td>(\pi_2 = \mathbb{Z})</td>
</tr>
<tr>
<td>8</td>
<td>U(4)</td>
<td>(\pi_2 = \mathbb{Z})</td>
</tr>
<tr>
<td>7</td>
<td>(G_2)</td>
<td>(\pi_1 = \mathbb{Z}_2)</td>
</tr>
<tr>
<td>7</td>
<td>(\text{SO}(3) \times \text{SO}(4))</td>
<td>(\pi_2 = \mathbb{Z}_2)</td>
</tr>
<tr>
<td>6</td>
<td>(\text{SO}(3) \times \text{SO}(3))</td>
<td>(\pi_2 = \mathbb{Z}_2)</td>
</tr>
<tr>
<td>6</td>
<td>U(3)</td>
<td>(\pi_2 = \mathbb{Z})</td>
</tr>
<tr>
<td>5</td>
<td>(\tilde{\text{SO}}(3))</td>
<td>(\pi_2 \neq 0)</td>
</tr>
</tbody>
</table>

Observation 4.7. Suppose that \((H)\) is one of the following:

\[H^0 = \text{SO}(n-2) \times \text{SO}(2); \ U(4), \ n = 8; \ U(3), \ n = 6; \ U(2), \ n = 5. \]

Then \(M \) is not stably parallelizable.

Proof. If \(M \) is stably parallelizable, then the principal orbit \(\text{SO}(n)/H \) is stably parallelizable; hence \(\text{SO}(n)/H^0 \) is also stably parallelizable.

Observation 4.8. Suppose that \(\dim M = 2n - 2, \pi_1(M) = \{1\}, \chi(M) \neq 0, \) and \(H^0 \) is conjugate to \(\text{SO}(n-2) \). Then \(\chi(M) \geq 4 \). Here \(\chi(M) \) is the Euler characteristic of \(M \).

Proof. The principal orbit \(\text{SO}(n)/H \) is of codimension one. Since \(\pi_1(M) = \{1\} \), there are just two singular orbits (cf. Uchida [11, Lemma 1.2.1]). By Observation 4.4, \(F(\text{SO}(n), M) \) is empty. Hence the following are the only possibilities of the singular orbit types:

\[\text{SO}(n)/\text{SO}(n-1) = S^{n-1}, \quad \text{SO}(n)/\text{SO}(n-2) \times \text{SO}(2) = Q_{n-2}, \quad \text{SO}(n)/\text{SO}(n-2) \times \text{SO}(2) = Q_{n-2}/\mathbb{Z}_2. \]

By the general position theorem and the assumption \(\pi_1(M) = \{1\} \), it is easy to see that the pair of singular orbits is none of the following: \((S^{n-1}, \text{SO}(n-1)/\mathbb{R}), (S^{n-1}, Q_{n-2}/\mathbb{Z}_2), (P_{n-1}(R), P_{n-1}(R)), (P_{n-1}(R), Q_{n-2}/\mathbb{Z}_2). \) Since \(\chi(M) = \chi \) (singular orbits), we have the desired result.

Observation 4.9. Suppose that \(\dim M = 2n - 2 \) and \((H) \) is one of the following:

\[H^0 = \text{Spin}(7), \ n = 9; \ U(4), \ n = 8; \ U(2), \ n = 5. \]

Then \(\pi_1(M) \neq \{1\} \) or \(\chi(M) \geq 4 \).

This is similarly proved as Observation 4.8.
Observation 4.10. Suppose that $n = 6$ and H^c is conjugate to $SU(3)$. Then M is not 2-connected.

Proof. By Observation 4.4, $F(SO(6), M)$ is empty. Hence the identity component of an isotropy group is conjugate to $SU(3)$ or $U(3)$ for each point of M. It follows that there is an equivariant decomposition: $M = SO(6)/SU(3) \times W F(SU(3), M)$, where $W = NSU(3)/SU(3) = U(1)$. Then it is seen that M is not 2-connected by the following homotopy exact sequence:

$$\pi_3(M) \to \pi_1(W) \to \pi_1(SO(6)/SU(3)) \to \pi_1(F(SU(3), M)) \to \pi_1(M).$$

Proof of Lemma 4.3. It is sufficient to prove that the set $F(SO(n), \Sigma^k)$ is non-empty by Observation 4.4. It is well known that every homotopy sphere is stably parallelizable (cf. Kervaire and Milnor [7, Theorem 3.1]). Let (H) be the principal isotropy type of a non-trivial smooth $SO(n)$ action on a homotopy k-sphere Σ^k. Then it follows that H^c is conjugate to $SO(n - 1)$ by Lemma 4.1 and the above Observations. Suppose that $F(SO(n), \Sigma^k)$ is empty. Then there is an equivariant decomposition: $\Sigma^k = SO(n)/SO(n - 1) \times W F(SO(n - 1), \Sigma^k)$, where $W = NSO(n - 1)/SO(n - 1) = Z_2$. But this is impossible for $k \leq n$. q.e.d.

Theorem 4.11. Suppose $5 \leq n \leq k \leq 2n - 2$. Let Σ^k be a homotopy k-sphere with a non-trivial smooth $SO(n)$ action. Then there is an equivariant decomposition: $\Sigma^k = \delta(D^n \times Y)$ as a smooth $SO(n)$ manifold. Here Y is a compact contractible $(k - n + 1)$-manifold with trivial $SO(n)$ action, and D^n is the standard n-disk with the canonical $SO(n)$ action.

Proof. Put $F = F(SO(n), \Sigma^k)$. By Lemma 4.3, F is non-empty. It follows from Lemma 4.2 that each connected component of F is of $(k - n)$-dimension. Let U be a closed $SO(n)$ invariant tubular neighborhood of F in Σ^k. Then U is regarded as an n-disk bundle over F with a smooth $SO(n)$ action as bundle isomorphisms. It follows that there is an equivariant decomposition: $U = D^n \times W F(SO(n - 1), \partial U)$, where $W = NSO(n - 1)/SO(n - 1) = Z_2$. Put $E = \Sigma^k - \text{int}U$. Then there is an equivariant decomposition: $E = SO(n)/SO(n - 1) \times W F(SO(n - 1), E)$. Notice that $F(SO(n - 1), \partial U) = \partial F(SO(n - 1), E)$. It is easy to see that $\pi_1(E) = \{1\}$ by the general position theorem. Hence $F(SO(n - 1), E)$ has just two connected components. Let Y be a connected component of $F(SO(n - 1), E)$. Then Y is a compact simply connected $(k - n + 1)$-manifold with non-empty boundary, and there is an equivariant decomposition: $\Sigma^k = U \cup E = \partial(D^n \times Y)$.
It remains to prove that Y is contractible. By the Poincaré Lefschetz duality, $H_i(D^n \setminus Y, \Sigma^k; Z) = H^{k-i}(D^n \times Y; Z) = \{0\}$ for each $i < n$. Consider the homology exact sequence: $H_{i+1}(D^n \times Y, \Sigma^k; Z) \to H_i(\Sigma^k; Z) \to H_i(D^n \setminus Y; Z) \to H_i(D^n \times Y; \Sigma^k; Z)$. Then $H_i(Y; Z) = \{0\}$ for $0 < i \leq n - 2$. On the other hand, Y is a compact simply connected manifold with non-empty boundary, and $\dim Y \leq n - 1$ by the assumption $h \leq 2n - 2$. It follows that Y is contractible. q.e.d.

REMARK. Theorem 4.11 for $n \geq 9$ has been proved already by Hsiang [5, Theorem III].

5. Decomposition and classification. Suppose $5 \leq n \leq m \leq 2n - 2$. Let ϕ be a non-trivial real analytic $SL(n, R)$ action on S^m. Consider the restricted $SO(n)$ action of ϕ. By Theorem 4.11, there exists an equivariant decomposition: $S^m = \partial(D^n \times Y)$ as a smooth $SO(n)$ manifold. In particular, the $SO(n)$ action has just two orbit types $SO(n)/SO(n-1)$ and $SO(n)/SO(n)$. Then, by Lemma 3.3, $F(SO(n-1), S^m)$ coincides with either $F(L(n), S^m)$ or $F(L^*(n), S^m)$. We shall show first the following decomposition theorem.

THEOREM 5.1. Suppose $5 \leq n \leq m \leq 2n - 2$. Let ϕ be a non-trivial real analytic $SL(n, R)$ action on S^m. Suppose

$$F(SO(n-1), S^m) = F(L(n), S^m).$$

Then, (i) $\Sigma = F(L(n), S^m)$ is a real analytic $(m - n + 1)$-dimensional closed submanifold of S^m which is homotopy equivalent to a sphere, and $R^c = NL(n)/L(n)$ acts naturally on Σ, (ii) $F = F(SL(n, R), S^m)$ is a real analytic $(m - n)$-dimensional closed submanifold of Σ, and there exists a real analytic R^c equivariant isomorphism j of $R \times F$ onto an open set of Σ such that $j(0, x) = x$ for $x \in F$, (iii) there exists an equivariant decomposition:

$$S^m = R^c \times F \cup \bigcup_{i=1}^n (R^c - 0) \times (\Sigma - F)$$

as a real analytic $SL(n, R)$ manifold, where $SL(n, R)$ acts naturally on R^n, R^c acts on $R^n - 0$ by the scalar multiplication, and f is an equivariant isomorphism of $(R^c - 0) \times F$ onto an open set of $(R^n - 0) \times (\Sigma - F)$ defined by $f(u, x) = (u, j(1, x))$ for $u \in R^n - 0$, $x \in F$.

PROOF. Consider the restricted $SO(n)$ action of ϕ. By Theorem 4.11, there exists an equivariant decomposition: $S^m = \partial(D^n \times Y)$ as a smooth $SO(n)$ manifold. Here Y is a compact contractible smooth $(m - n + 1)$-manifold. Then $\Sigma = F(SO(n-1), S^m)$ is a real analytic $(m - n + 1)$-dimensional closed submanifold of S^m which is C^∞ diffeomorphic to a
double of Y; hence Σ is a homotopy sphere. By Lemma 3.3, $F = F(SO(n), S^n)$ is a real analytic $(m - n)$-dimensional closed submanifold of S^n which is C^∞ diffeomorphic to ∂Y; hence F is homology equivalent to a sphere. Moreover, there exists an equivariant decomposition:

$$S^n - F = SL(n, R)/L(n) \times_{\mathbb{R}^+} (\Sigma - F) = (R^m - 0) \times (\Sigma - F)$$

as a real analytic $SL(n, R)$ manifold. By Theorem 3.7, there exists a real analytic left principal R^+ bundle $p: E \to F$ and there exists a real analytic $SL(n, R)$ equivariant isomorphism h of $R^m \times R^+ E$ onto an open set of S^n such that $h(0, u) = p(u)$ for $u \in E$. It is easy to see that the bundle $p: E \to F$ is trivial as a C^∞ bundle by the decomposition $S^n = \partial(D^m \times Y)$.

To show that E is trivial as a real analytic R^+ bundle, we need the following.

Lemma 5.2. Let $p: V \to X$ be a real analytic vector bundle over a paracompact real analytic manifold X. Then the bundle V admits a real analytic Riemannian metric.

Proof. Let $i: X \to V$ be the zero section. Then it follows from a calculation of transition functions that there is an isomorphism $i^*\tau(V) = V \oplus \tau(X)$ as real analytic vector bundles. Here τ denotes the tangent bundle. Since V is a paracompact real analytic manifold, there exists a real analytic embedding $f: V \to R^n$ such that $f(V)$ is a closed real analytic submanifold of R^n (cf. Grauert [3]). It follows that there is an isomorphism $\tau(V) \oplus \nu = R^n \times V$ as real analytic vector bundles. Here ν denotes the normal bundle. Therefore there is an isomorphism $V \oplus \tau(X) \oplus i^*\nu = R^n \times X$ as real analytic vector bundles. The product bundle $R^n \times X$ admits canonically a real analytic Riemannian metric; hence its real analytic subbundle V admits a real analytic Riemannian metric.

q.e.d.

We now return to the proof of Theorem 5.1. Let $R \times R^+ E \to F$ be the line bundle associated to the principal bundle $p: E \to F$. Then it has a real analytic Riemannian metric; hence the associated sphere bundle is a real analytic double covering over F. Since $p: E \to F$ is trivial as a C^∞ bundle, the sphere bundle is trivial as a real analytic bundle, and hence the principal bundle $p: E \to F$ has a real analytic cross-section. Therefore E is trivial as a real analytic R^+ bundle. It follows that there exists a real analytic $SL(n, R)$ equivariant isomorphism $h: R^m \times F \to S^n$ onto an open set of S^n such that $h(0, x) = x$ for $x \in F$.

Consider the fixed point sets of restricted $L(n)$ actions. We have
a real analytic R^\times equivariant isomorphism $j: R \times F \to \Sigma$ onto an open set of $\Sigma = F(L(n), S^n)$, defined by $j(t, x) = h(te, x)$ for $t \in R, x \in F$. Here $e = (1, 0, \ldots, 0) \in R^n$, and R^\times acts canonically on Σ through the identification $R^\times = NL(n)/L(n)$. It is easy to see that there exists an equivariant decomposition:

$$S^n = R^n \times F \cup \left((R^n - 0) \times_{R^\times} (\Sigma - F) \right)$$

as a real analytic $SL(n, R)$ manifold. Here f is an equivariant isomorphism of $(R^n - 0) \times_{R^\times} F$ onto an open set of $(R^n - 0) \times_{R^\times} (\Sigma - F)$ defined by $f(u, x) = (u, j(1, x))$ for $u \in R^n - 0, x \in F$. This completes the proof of Theorem 5.1.

REMARK. By this theorem, the action ϕ on S^n is completely determined up to an equivariant isomorphism by $\Sigma = F(L(n), S^n)$ with R^\times action and an equivariant map $j: R^\times \times F \to \Sigma$.

To state a classification theorem, we introduce the following notions. Let G be a Lie group, and let $\phi_i: G \times M_i \to M_i$ be a real analytic G action for $i = 1, 2$. We say that ϕ_1 is weakly C^r equivariant to ϕ_2 if there exists an automorphism h of G and there exists a C^r diffeomorphism $f: M_1 \to M_2$ such that the following diagram is commutative:

$$\begin{array}{ccc}
G \times M_1 & \xrightarrow{\phi_1} & M_1 \\
\downarrow{h \times f} & & \downarrow{f} \\
G \times M_2 & \xrightarrow{\phi_2} & M_2
\end{array}$$

(5-a)

In particular, ϕ_1 is said to be C^r equivariant to ϕ_2 if the identity map of G can be chosen as the automorphism h.

Let h be an automorphism of G, and let $\phi: G \times M \to M$ be a real analytic G action. Define a new real analytic G action $h^*\phi$ on M as follows: $(h^*\phi)(g, x) = \phi(h(g), x)$ for $g \in G, x \in M$. Then the action $h^*\phi$ is weakly C^m equivariant to ϕ, because the following diagram is commutative:

$$\begin{array}{ccc}
G \times M & \xrightarrow{h^*\phi} & M \\
\downarrow{h \times \text{id}} & & \downarrow{\text{id}} \\
G \times M & \xrightarrow{\phi} & M
\end{array}$$

(5-b)

Let I_g denote the inner automorphism of G defined by $I_g(g') = gg'g^{-1}$ for $g, g' \in G$. Then, for any real analytic G action ϕ on M, ϕ is C^m equivariant to $I_g^*\phi$, because the following diagram is commutative:
\begin{align*}
G \times M & \xrightarrow{\phi} M \\
\downarrow \text{id} \times f & \quad \downarrow f \\
G \times M & \xrightarrow{I_\phi} M,
\end{align*}

where \(f(x) = \phi(g, x) \) for \(x \in M \).

Theorem 5.3. Suppose \(5 \leq n \leq m \leq 2n - 2 \). Then there is a natural one-to-one correspondence between the weak \(C^r \) equivariance classes of non-trivial real analytic \(SL(n, R) \) actions on the standard \(m \)-sphere and the \(C^r \) equivariance classes of real analytic \(R^\times \) actions on homotopy \((m - n + 1) \)-spheres satisfying the condition \((P) \), for each \(r = 0, 1, \ldots, \infty, \omega \). The correspondence is given by the construction in Section 1.

Proof. Let \(A_r(n, m) \) denote the weak \(C^r \) equivariance classes of non-trivial real analytic \(SL(n, R) \) actions on the standard \(m \)-sphere, let \(A'_r(n, m) \) denote the \(C^r \) equivariance classes of non-trivial real analytic \(SL(n, R) \) actions on the standard \(m \)-sphere such that \(F(SO(n - 1), S^m) = F(L(n), S^m) \), and let \(B_r(k) \) denote the \(C^r \) equivariance classes of real analytic \(R^\times \) actions on homotopy \(k \)-spheres satisfying the condition \((P) \) in Section 1.

Let \(\phi: R^\times \times \Sigma \to \Sigma \) be a real analytic \(R^\times \) action on a homotopy \(k \)-sphere \(\Sigma \) satisfying the condition \((P) \). We constructed, in Section 1, a compact real analytic \(SL(n, R) \) manifold \(M(\psi, j) \) such that the \(C^\infty \) equivariance class of \(M(\psi, j) \) does not depend on the choice of \(j \), \(F(SO(n - 1), M(\psi, j)) = F(L(n), M(\psi, j)) \), and \(M(\psi, j) \) is real analytically isomorphic to the standard \((n + k - 1) \)-sphere for \(n + k \geq 6 \). The correspondence \(\psi \to M(\psi, j) \) defines a mapping \(c_r: B_r(k) \to A'_r(n, n + k - 1) \) for \(r = 0, 1, \ldots, \infty, \omega \) and each \(n + k \geq 6 \). It follows from Theorem 5.1 that \(c_r \) is a bijection \((r = 0, 1, \ldots, \infty, \omega) \) if \(n \geq 5 \) and \(1 \leq k \leq n - 1 \).

It remains to show that there is a natural one-to-one correspondence between \(A'_r(n, m) \) and \(A_r(n, m) \). Let \(\phi \) be a real analytic non-trivial \(SL(n, R) \) action on \(S^m \) such that \(F(SO(n - 1), S^m) = F(L(n), S^m) \). Then \(\phi \) represents a class of \(A'_r(n, m) \) and a class of \(A_r(n, m) \). Hence there is a natural mapping \(i_r: A'_r(n, m) \to A_r(n, m) \).

We shall show that \(i_r \) is a bijection \((r = 0, 1, \ldots, \infty, \omega) \) if \(5 \leq n \leq m \leq 2n - 2 \). Let \(\sigma \) be the automorphism of \(SL(n, R) \) defined by \(\sigma(X) = X^{-1} \) for \(X \in SL(n, R) \). Then it is seen that \(\sigma \) is an involution and \(\sigma(L(n)) = L^*(n) \). Let \(\phi \) be a real analytic non-trivial \(SL(n, R) \) action on \(S^m \). Then, by Lemma 3.3 (c) we have that \(F(SO(n - 1), S^m) \) coincides with \(F(L(n), S^m) \) or \(F(L^*(n), S^m) \). Since \(\sigma(L(n)) = L^*(n) \), we see that if
Let ϕ, ϕ' be real analytic non-trivial $SL(n, R)$ actions on S^n. Suppose that ϕ' is weakly C^r equivariant to ϕ. Then by the diagrams (5-a), (5-b), (5-c) ϕ' is C^r equivariant to one of the following: $\phi, \sigma^r \phi, \gamma^r \phi, \sigma^r \gamma^r \phi$. Notice that if $F(SO(n-1), S^n) = F(L(n), S^n)$ for ϕ, then $F(SO(n-1), S^n) = F(L(n), S^n)$ for $\sigma^r \phi$, and $F(SO(n-1), S^n) = F(L^*(n), S^n)$ for $\sigma^r \gamma^r \phi$. Therefore, if ϕ and ϕ' represent classes of $A'_r(n, m)$, respectively, and if ϕ' is weakly C^r equivariant to ϕ, then ϕ' is C^r equivariant to ϕ or $\gamma^r \phi$. To show that i_r is injective, it suffices to prove $\sigma^r \phi$ is C^r equivariant to ϕ. Consider the real analytic $SL(n, R)$ manifold

$$M(\psi, j) = R^n \times F \cup (R^n - 0) \times (\Sigma - F)$$

constructed in Section 1. Define a real analytic isomorphism $g: M(\psi, j) \to M(\psi, j)$ by

$$g(u, x) = (Y \cdot u, x) \text{ for } (u, x) \in R^n \times F,$$
$$g(v, y) = (Y \cdot v, y) \text{ for } (v, y) \in (R^n - 0) \times (\Sigma - F).$$

Here the matrix Y is as before. Then the following diagram is commutative:

$$\begin{array}{ccc}
SL(n, R) \times M(\psi, j) & \xrightarrow{\phi} & M(\psi, j) \\
\downarrow \gamma \times g & & \downarrow g \\
SL(n, R) \times M(\psi, j) & \xrightarrow{\phi} & M(\psi, j),
\end{array}$$

where ϕ is the natural $SL(n, R)$ action on $M(\psi, j)$. By the diagram (5-b), we have the following commutative diagram:
Since $\gamma^2 = 1$, it follows that $\gamma^* \phi$ is C^∞ equivariant to ϕ; hence the mapping i, is bijective. q.e.d.

6. R^∞ actions on spheres. In the previous section, we showed that the classification of real analytic $SL(n, R)$ actions on the m-sphere can be reduced to that of real analytic R^∞ actions on homotopy $(m-n+1)$-spheres satisfying the condition (P). So we study now R^∞ actions on spheres.

Let S^k be the standard k-sphere in R^{k+1}, $k \geq 1$. Let T be an involution of S^k defined by $T(x_0, x_1, \ldots, x_k) = (-x_0, x_1, \ldots, x_k)$. Put

$$\xi^a = x_0(1 - x_0^2)a(x_0^2)(\sqrt{x_0^2} - x_0^2a(x_0^2)\sum_{i=1}^k x_i(\partial/\partial x_i),$$

where $a(t)$ is a real analytic function defined on an open neighborhood of the closed interval $[0, 1]$. It is easy to see that ξ^a is a real analytic tangent vector field on S^k such that $T_\ast \xi^a = \xi^a$. Let $\{\theta_t; t \in R\}$ be the one-parameter group of real analytic transformations of S^k associated with the vector field ξ^a. It follows from $T_\ast \xi^a = \xi^a$ that $T_\ast \theta_t = \theta_t \cdot T$ for $t \in R$. Now we can define a real analytic R^∞ action ψ^a on S^k by

$$\psi^a((-1)^n e^t, x) = T^n(\theta_t(x)) \quad \text{for} \quad x \in S^k, \quad t \in R, \quad n \in Z.$$

It is easy to see that the R^∞ action ψ^a satisfies the condition (P)-(i). We shall give a sufficient condition for ψ^a to satisfy the condition (P)-(ii).

Proposition 6.1. If $a(0) = 1$, then the R^∞ action ψ^a satisfies the condition (P).

Proof. It is sufficient to construct a real analytic into isomorphism $j: R \times F \to S^k$ satisfying the following conditions:

(1) \quad $j(0, x) = x$,

(2) \quad $T(j(t, x)) = j(-t, x)$,

(3) \quad $j(e^t, x) = \psi^a(e^t, j(t, x))$

for $x \in F; t \in R$. Here F is the fixed point set of T. It is easy to see that the condition (3) is equivalent to the following condition:

(3') \quad $j_\ast(t(\partial/\partial t)) = \xi^a$.

\[\begin{align*}
SL(n, R) \times M(\psi, j) & \xrightarrow{\gamma^* \phi} M(\psi, j) \\
\downarrow \phi \times \text{id} & \quad \downarrow \text{id} \\
SL(n, R) \times M(\psi, j) & \xrightarrow{\phi} M(\psi, j).
\end{align*} \]
By the assumption \(a(0) = 1 \), there is a real analytic function \(b(t) \) such that \(a(t) = 1 + t \cdot b(t) \). Put \(F(t, u) = -tu^3 + tu^3 b(t^2u^2) - t^2u^b(t^2u^2) \). Then there is a unique real analytic function \(c(t) \) defined on an interval \((-\varepsilon, \varepsilon) \) for a positive real \(\varepsilon \) such that \(\frac{d}{dt} c(t) = F(t, c(t)) \), \(c(0) = 1 \), \(-1 < t \cdot c(t) < 1 \).

Define a real analytic mapping \(j_1: (-\varepsilon, \varepsilon) \times F \to S^k \) by \(j_1(t, x) = (t \cdot c(t), (1 - t^2c(t)^2)^1/2, x) \). Then it is easy to see that \(j_1(t, x) \) is an integral curve of the vector field \(\xi^a \). By the definition of the action \(\psi^a \), the curve \(s \to \psi^a(e^s, j_1(t, x)) \) is an integral curve of the vector field \(\xi^a \). By the condition \(\psi^a \), the curve \(s \to j_1(e^s, x) \) is also an integral curve of \(\xi^a \). It follows that

\[
(\ast) \quad \psi^a(e^s, j_1(t, x)) = j_1(e^s, x)
\]

for \(x \in F, -\varepsilon < t < \varepsilon, -\varepsilon < e^t \varepsilon < \varepsilon \). Define a mapping \(j: R \times F \to S^k \) by

\[
j(t, x) = \begin{cases} (\psi^a(2t/\varepsilon, j_1(\varepsilon/2, x)) & \text{for } t \neq 0 \\ (0, x) & \text{for } t = 0 \end{cases}
\]

Then \(j \) is an extension of \(j_1 \) by (\(\ast \)); hence \(j \) is real analytic. By definition, the map \(j \) satisfies the conditions (1), (2) and (3).

Finally, we shall show that \(j \) is an into isomorphism. Let \(O(k) \) be the orthogonal transformation group of the Euclidean space \(R^{k+1} \) leaving fixed the \(x_0 \)-coordinate. Then the vector field \(\xi^a \) and the map \(j_1 \) are \(O(k) \) invariant by definition. Hence we have

\[
(\ast\ast) \quad A(j(t, x)) = j(t, Ax) \text{ for } A \in O(k), \quad (t, x) \in R \times F.
\]

Since \(c(0) = 1 \), the map \(j \) is non-singular at each point of \(0 \times F \). It remains to show that \(j \) is injective. Assume \(j(t_1, x_1) = j(t_2, x_2) \) for some \((t_1, x_1) \in R \times F \). Then \(j(st_1, x_1) = j(st_2, x_2) \) for any \(s \neq 0 \) by the definition of \(j \). Let \(s \to 0 \). Then \(j(0, x_1) = j(0, x_2) \). Hence we have \(x_1 = x_2 \) and \(j(t_1, x_1) = j(t_2, x_2) \). It follows from \((\ast\ast) \) that \(j(t_1, x) = j(t_2, x) \) for any \(x \in F \). Assume \(t_1 \neq t_2 \). Then \(j \) induces a real analytic isomorphism of \(S^1 \times F \) onto an open set of \(S^k \). This is a contradiction. Therefore the map \(j \) is injective.

By Proposition 6.1, we can construct many examples of real analytic \(R^k \) actions on the standard \(k \)-sphere satisfying the condition (P). Let

\[
a = (a_1, a_2, \ldots, a_N) \in R^N \quad \text{for } \ N = 1, 2, \ldots,
\]

and define a real analytic tangent vector field \(\xi^a \) on \(S^k \) as follows:
\[\xi_a = \left(\prod_{i=1}^{k} (1 - a_i x_0^i) \right) \cdot (x_0(1 - x_0^2)(\partial/\partial x_0) - x_0^2 \sum_{i=1}^{k} x_i(\partial/\partial x_i)) \]

Let \(\psi^a \) be the real analytic \(R^a \) action on \(S^k \) determined by the vector field \(\xi^a \) and the involution \(T \). Then the action \(\psi^a \) satisfies the condition (P).

Proposition 6.2. Let \(a = (a_1, \ldots, a_N) \) and \(a' = (a_1', \ldots, a_N') \).

(i) If \(\psi^a \) is \(C^0 \) equivariant to \(\psi^{a'} \), then the cardinality of the set \(\{a_j: a_j > 1\} \) is equal to that of the set \(\{a'_j: a'_j > 1\} \).

(ii) If \(\psi^a \) is \(C^2 \) equivariant to \(\psi^{a'} \), then \(\prod_{j=1}^{N} (1 - a_j) = \prod_{j=1}^{N} (1 - a'_j) \).

Proof. The points \(x_0 = \pm 1 \) are isolated zeros of the vector field \(\xi^a \), and the other zeros of \(\xi^a \) are the hypersurfaces

\[x_0 = 0 \quad \text{and} \quad x_0 = \pm 1/a_j^{1/2} \quad \text{for} \quad a_j > 1. \]

If there is an equivariant homeomorphism of \(S^k \) with the \(R^a \) action \(\psi^a \) to \(S^k \) with the \(R^{a'} \) action \(\psi^{a'} \), then the zeros of the vector field \(\xi^a \) is homeomorphic to the zeros of the vector field \(\xi^{a'} \). Hence the cardinality of the set \(\{a_j: a_j > 1\} \) is equal to that of the set \(\{a'_j: a'_j > 1\} \).

Suppose next that there is an equivariant \(C^2 \) diffeomorphism \(f \) of \(S^k \) with the \(R^a \) action \(\psi^a \) to \(S^k \) with the \(R^{a'} \) action \(\psi^{a'} \). We shall show that there is an equivariant \(C^2 \) diffeomorphism \(g \) of \(S^1 \) with the \(R^a \) action \(\psi^a \) to \(S^1 \) with the \(R^{a'} \) action \(\psi^{a'} \). Put

\[A(x) = \{(t, (1 - t^2)^{1/2} x) \in S^k: -1 < t < 1 \}, \]
\[C(x) = \{(\sin \theta, \cos \theta \cdot x) \in S^k: \theta \in R \}, \]

for \(x \in F \). Then \(C(x) \) is the closure of the union \(A(x) \cup A(-x) \). Since the map \(f \) is equivariant, we have \(f(A(x)) = A(f(x)) \) for \(x \in F \). Then we have \(f(-x) = -f(x) \) for \(x \in F \), by the differentiability of \(f \) at \(x_0 = 1 \). Hence \(f(C(x)) = C(f(x)) \) for \(x \in F \). Since the \(R^a \) action \(\psi^a \) is compatible with the \(O(k) \) action (see the proof of Proposition 6.1), we can assume \(f(y) = y \) for some \(y \in F \). Then the restriction \(f: C(y) \to C(y) \) can be regarded as an equivariant \(C^2 \) diffeomorphism \(g \) of \(S^1 \) with the \(R^a \) action \(\psi^a \) to \(S^1 \) with the \(R^{a'} \) action \(\psi^{a'} \).

Finally we shall show that the existence of \(g \) implies \(\prod_{j=1}^{N} (1 - a_j) = \prod_{j=1}^{N} (1 - a'_j) \). Since \(g \) is equivariant, we have \(g_*(\xi^a) = \xi^{a'} \). Let \(\pi: S^1 \to R \) be a map defined by \(\pi(x_0, x_1) = x_1 \). Then \(\pi \) is a local diffeomorphism at \(x_0 = \pm 1 \), and

\[\pi_*(\xi^a) = -x_1(1 - x_1^2) \prod_{j=1}^{N} (1 - a_j(1 - x_1^2))(d/dx_1) \].

There is a local \(C^2 \) diffeomorphism \(h \) of \(R \) such that \(h(0) = 0, \pi \cdot g = \)
h \cdot \pi$. Then it follows from \(h_{a}(\pi_{a}(\xi^*)\pi_{a}(\xi^*)) = \pi_{a}(\xi^*) \) that
\[-x_{i}(1-x_{i}^{2}) \prod_{j=1}^{N}(1-a_{j}(1-x_{j}^{2})) \frac{dh}{dx_{i}}(x_{i}) = -y_{i}(1-y_{i}^{2}) \prod_{j=1}^{N}(1-a_{j}^{*}(1-y_{j}^{2})) \] for \(y_{i} = h(x_{i}) \). Differentiate by \(x_{i} \), and put \(x_{i} = 0 \). Then we have the desired equation, because \(\frac{dh}{dx_{i}}(0) \neq 0 \). q.e.d.

7. Closed subgroups of \(O(n) \). In this section, we shall prove Lemmas 4.1 and 4.2. The method used here is essentially due to Dynkin[2].

PROOF OF LEMMA 4.1. Let \(G \) be a connected closed subgroup of \(O(n) \). Suppose that
\[(*) n \geq 5, \quad 0 < \dim O(n)/G \leq 2n - 2.
The inclusion map \(i: G \rightarrow O(n) \) gives an orthogonal faithful representation of \(G \).

(A) Suppose first that the representation \(i \) is irreducible.

(A-1) Suppose that \(G \) is not semi-simple. Let \(T \) be a one-dimensional closed central subgroup of \(G \). Since \(i \) is irreducible, the centralizer of \(T \) in \(O(n) \) agrees with \(U(n/2) \) by an inner automorphism of \(O(n) \) (cf. Uchida [12, Lemma 5.1]). Put \(n = 2k \). Then it can be assumed that \(G \) is a subgroup of \(U(k) \) and the inclusion \(G \rightarrow U(k) \) is irreducible. It follows that the center of \(G \) is one-dimensional by Schur’s lemma. Moreover the condition \((*) \) implies \(k(k-1) = \dim O(2k)/U(k) \leq 4k - 2 \). Hence \(k = 3, 4 \). It is easy to see that \(SU(3) \) has no semi-simple proper subgroup of codimension \(\leq 4 \), and \(SU(4) \) has no semi-simple proper subgroup of codimension \(\leq 2 \). Therefore the case (A-1) occurs only when \(n = 6, 8; G \) agrees with \(U(n/2) \) up to an inner automorphism of \(O(n) \).

(A-2) Suppose that \(G \) is semi-simple and the complexification \(i^c \) of the representation \(i \) is reducible. Then \(n = 2k \), \(G \) is isomorphic to a subgroup \(G' \) of \(U(k) \), and the inclusion \(G' \rightarrow U(k) \) is irreducible. Hence \(k = 3, 4 \) and \(G' = SU(k) \). Calculating the centralizer of the center of \(G \) in \(O(n) \), we can show that \(G \) agrees with \(SU(n/2) \) up to an inner automorphism of \(O(n) \).

(A-3) Suppose that \(G \) is semi-simple, non-simple, and \(i^c \) is irreducible. Let \(G^* \) be the universal covering group of \(G \), and let \(p: G^* \rightarrow G \) be the projection. Since \(G \) is not simple, there are closed semi-simple normal subgroups \(H_1, H_2 \) of \(G^* \) such that \(G^* = H_1 \times H_2 \). Consider the representation \(i^{c}p: G^* \rightarrow U(n) \). Then there are irreducible complex representations \(r_t: H_t \rightarrow U(n_t) \) for \(t = 1, 2 \) such that the tensor product \(r_1 \otimes r_2 \) is equivalent to \(i^{c}p \). Since \(i^{c}p \) has a real form, the representations \(r_1, r_2 \) are self-conjugate; hence \(r_1 \) (resp. \(r_2 \)) has a real form or a quaternionic structure, but not both (cf. Adams [1, Proposition 3.56]).
Moreover, if \(r_1 \) has a real form (resp. quaternionic structure), then \(r_2 \) has also a real form (resp. quaternionic structure).

Suppose first that \(r_1, r_2 \) have quaternionic structures. Then it follows that \(n_1, n_2 \) are even, and \(\dim H_t \leq \dim Sp(n_t/2) = n_t(n_t + 1)/2 \) for \(t = 1, 2 \). The condition (*) implies \(\dim O(n) - \dim Sp(n_t/2) - \dim Sp(n_t/2) \leq 2n - 2, n = n_1n_2 \). Therefore \(n^2 - 3n + 4 \leq (n_1 + n_2)(n_1 + n_2 + 1) \leq (2 + n/2)^2 \). Hence \(n \leq 7 \). But \(n \) is a multiple of 4 and \(n \geq 5 \). Therefore \(r_1, r_2 \) cannot have quaternionic structures simultaneously.

Suppose next that \(r_1, r_2 \) have real forms. Then, since \(H_t \) is semisimple, it follows that \(n_t \geq 3 \) for \(t = 1, 2 \). Moreover, \(\dim H_t \leq \dim O(n_t) = n_t(n_t - 1)/2 \) for \(t = 1, 2 \). The condition (*) implies \(\dim O(n) - \dim O(n_t) - \dim O(n) \leq 2n - 2, n = n_1n_2 \). Therefore \(n^2 - 3n + 4 \leq (n_1 + n_2)(n_1 + n_2 - 1) \leq (3 + n/3)(2 + n/3) \). Hence \(n \leq 5 \). But \(n = n_1n_2 \geq 9 \). Therefore \(r_1, r_2 \) cannot have real forms simultaneously. Therefore the case (A-3) does not happen.

(A-4) Suppose finally that \(G \) is simple and \(i^c \) is irreducible. Put \(r = \text{rank } G \), and denote by \(G^* \) the universal covering group of \(G \). Denote by \(L_1, L_2, \ldots, L_r \) the fundamental weights of \(G^* \). Then there is a one-to-one correspondence between complex irreducible representations of \(G^* \) and sequences \((a_1, \ldots, a_r) \) of non-negative integers such that \(a_1L_1 + \cdots + a_rL_r \) is the highest weight of a corresponding representation (cf. Dynkin [2, Theorems 0.8 and 0.9]; Humphreys [6, Section 21.2]). Denote by \(d(a_1L_1 + \cdots + a_rL_r) \) the degree of the complex irreducible representation of \(G^* \) with the highest weight \(a_1L_1 + \cdots + a_rL_r \). The degree can be computed by Weyl's dimension formula (cf. Dynkin [2, Theorem 0.24, (0.148)-(0.155)]; Humphreys [6, Section 24.3]). Notice that if \(a_i \geq a'_i \) for \(i = 1, 2, \ldots, r \), then \(d(a_1L_1 + \cdots + a_rL_r) \geq d(a'_1L_1 + \cdots + a'_rL_r) \) and the equality holds only if \(a_i = a'_i \) for \(i = 1, 2, \ldots, r \).

(A-4-1) Suppose that \(G \) is an exceptional Lie group. Then we have Table 3. Here \(m(G) \) is the least degree of non-trivial complex irreducible representations of \(G^* \) (cf. Dynkin [2, p. 378, Table 30]). The condition (*) implies that \(\dim G \geq \dim O(n) - (2n - 2) = (n - 1)(n - 4)/2 \). Hence \((m - 1)(m - 4) \leq 2k \). The possibility remains only when \(G^* = G_2 \) and

<table>
<thead>
<tr>
<th>(G^*)</th>
<th>(k = \dim G)</th>
<th>(m = m(G))</th>
</tr>
</thead>
<tbody>
<tr>
<td>(G_2)</td>
<td>14</td>
<td>7</td>
</tr>
<tr>
<td>(F_4)</td>
<td>52</td>
<td>26</td>
</tr>
<tr>
<td>(E_6)</td>
<td>78</td>
<td>27</td>
</tr>
<tr>
<td>(E_7)</td>
<td>133</td>
<td>56</td>
</tr>
<tr>
<td>(E_8)</td>
<td>248</td>
<td>248</td>
</tr>
</tbody>
</table>
Since \(d(L_1) = 7, d(L_2) = 14, d(2L_1) = 27 \) for \(G^* = G_2 \), there is no complex irreducible representation of \(G_2 \) of degree 8. The complex irreducible representation of \(G_2 \) of degree 7 has a real form. Therefore the case (A-4-1) occurs only when \(n = 7 \) and \(G = G_2 \), where the inclusion \(G_2 \to O(7) \) is uniquely determined up to an inner automorphism of \(O(7) \).

(A-4-2) Suppose that \(G^* \) is isomorphic to \(SU(r + 1) \) for \(r \geq 1 \). Since \(\text{rank} \ G \leq \text{rank} SO(n) \), it follows that

\[
2r \leq n.
\]

The condition (*) implies that

\[
(n - 1)(n - 4)/2 \leq r(r + 2) \leq n(n - 1)/2, \quad n \geq 5.
\]

It is easy to see from (a), (b) that \(n \leq 13 \). If the pair \((n, r)\) satisfies the conditions (a), (b), then it is one of the following: (12, 6), (11, 5), (10, 5), (9, 4), (8, 4), (8, 3), (7, 3), (6, 2), (5, 2), (5, 1). Notice that \(d(L_1) = r + C_r, d(L_1 + L_r) = r(r + 2), d(2L_1) = d(2L_r) = (r + 1)(r + 2)/2 \). Hence there is no complex irreducible representation of \(SU(r + 1) \) of degrees \(2r \) and \(2r + 1 \) for \(r \geq 4 \). If \(r = 3 \), then \(d(L_1) = d(L_2) = 4, d(L_3) = 6, d(2L_1) = d(2L_2) = 10, d(2L_3) = d(L_1 + L_3) = 20, d(L_1 + L_3) = 15 \). Hence there is no complex irreducible representation of \(SU(4) \) of degrees 7 and 8. If \(r = 2 \), then \(d(L_1) = d(L_2) = 3, d(2L_1) = d(2L_2) = 6, d(L_1 + L_2) = 8 \). Hence there is no complex irreducible representation of \(SU(3) \) of degree 5. There are just two complex irreducible representations of \(SU(3) \) of degree 6 which are not self-conjugate. Therefore there is no possibility for \(r \geq 2 \). Finally there is only one complex irreducible representation of \(SU(2) \) of degree 5 which has a real form. Therefore the case (A-4-2) occurs only when \(n = 5 \) and \(G = SO(3) \), where the inclusion \(SO(3) \to O(5) \) is an irreducible representation uniquely determined up to an inner automorphism of \(O(5) \).

(A-4-3) Suppose that \(G^* \) is isomorphic to \(Sp(r) \) for \(r \geq 2 \). The condition (*) implies that \((n - 1)(n - 4)/2 \leq r(2r + 1) < n(n - 1)/2\). Hence \(n = 2r + 2 \) or \(n = 2r + 3 \). Notice that \(d(L_1) = 2r + 1, d(2L_1) = r(2r + 1) \). If \(r \geq 3 \), then \(d(L_1) < d(L_2) < \cdots < d(L_s) \geq d(L_{s+1}) > \cdots > d(L_r) \) for some \(s \). It is easy to see that there is no complex irreducible representation of \(Sp(r) \) of degrees \(2r + 2 \) and \(2r + 3 \) for \(r \geq 3 \). If \(r = 2 \), then \(d(L_1) = 4, d(L_2) = 5, d(2L_1) = 10, d(2L_2) = 14, d(L_1 + L_2) = 16 \). Hence there is no complex irreducible representation of \(Sp(r) \) of degrees \(2r + 2 \) and \(2r + 3 \) for \(r \geq 2 \). Therefore the case (A-4-3) does not happen.

(A-4-4) Suppose that \(G^* \) is isomorphic to \(Spin(k) \) for \(k \geq 5 \). The condition (*) implies that \((n - 1)(n - 4) \leq k(k - 1) < n(n - 1)\). Hence
 Actions on Spheres 171

If $k = 2r$, then $d(L_i) = 2^{r-1}i$, for $1 \leq i \leq r - 2$, $d(L_{r-1}) = d(L_r) = 2^{r-1}i$, $d(2L_i) = (r + 1)(2r - 1)$, $d(2L_{r-1}) = d(L_r) = 2^{r-1}(2r - 1)$, $d(L_{r-1} + L_r) = 2^{r-1}C_{r-1}$. Hence there is no complex irreducible representation of $\text{Spin}(2r)$ of degrees $2r + 1$ and $2r + 2$. If $k = 2r + 1$, then $d(L_i) = 2^{r+1}i$, for $1 \leq i \leq r - 1$, $d(L_r) = 2^{r+1}i$, $d(2L_i) = r(2r + 3)$, $d(L_i + L_r) = 2^{r+1}i$, $d(2L_r) = 2^{2r}$. Hence there is no complex irreducible representation of $\text{Spin}(2r + 1)$ of degrees $2r + 2$ and $2r + 3$ for $r \geq 3$, there is no complex irreducible representation of $\text{Spin}(7)$ of degree 9, but there is only one complex irreducible representation of $\text{Spin}(7)$ of degree 8 which has a real form. Therefore the case (A-4-4) occurs only when $n = 8$ and $G = \text{Spin}(7)$, the inclusion $\text{Spin}(7) \hookrightarrow \text{O}(8)$ is a real spin representation uniquely determined up to an inner automorphism of $\text{O}(8)$.

Consequently, the case (A) occurs only when G is one of the following listed in Table 4 up to an inner automorphism of $\text{O}(n)$. Here

<table>
<thead>
<tr>
<th>n</th>
<th>G</th>
<th>$i: G \to \text{O}(n)$</th>
<th>$	ext{dim} \text{O}(n)/G$</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>$\text{Spin}(7)$</td>
<td>A_7</td>
<td>$7 = n - 1$</td>
</tr>
<tr>
<td>8</td>
<td>$U(4)$</td>
<td>μ_4</td>
<td>$12 = 2n - 4$</td>
</tr>
<tr>
<td>8</td>
<td>$SU(4)$</td>
<td>μ_6</td>
<td>$13 = 2n - 3$</td>
</tr>
<tr>
<td>7</td>
<td>G_2</td>
<td>ω</td>
<td>$7 = n$</td>
</tr>
<tr>
<td>6</td>
<td>$U(3)$</td>
<td>μ_3</td>
<td>$6 = n$</td>
</tr>
<tr>
<td>6</td>
<td>$SU(3)$</td>
<td>μ_6</td>
<td>$7 = 2n - 5$</td>
</tr>
<tr>
<td>5</td>
<td>$SO(3)$</td>
<td>β</td>
<td>$7 = 2n - 3$</td>
</tr>
</tbody>
</table>

$\mu_4: U(k) \to \text{O}(2k)$, $\mu_6: SU(k) \to \text{O}(2k)$ are the canonical inclusions, and A_7, ω, β are irreducible representations uniquely determined up to an inner automorphism of $\text{O}(n)$, respectively.

(B) Suppose next that the representation $i: G \to \text{O}(n)$ is reducible. Then, by an inner automorphism of $\text{O}(n)$, G is isomorphic to a subgroup G' of $\text{O}(k) \times \text{O}(n - k)$ for some k such that $0 < k \leq n/2$. The condition (\ast) implies that

\[(c) \quad k(n - k) = \dim \text{O}(n)/\text{O}(k) \times \text{O}(n - k) \leq 2n - 2.\]

Hence $k = 1, 2$ or $k = 3$ and $n = 6, 7$. If $k = 3$ and $n = 6, 7$, then it is easy to see that $G' = SO(3) \times SO(3)$, $G' = SO(3) \times SO(4)$, respectively. Suppose $k = 2$. Then the inequality (c) implies $2 + \dim G' \leq \dim \text{O}(2) \times \text{O}(n - 2)$. Since $SO(n - 2)$ is semi-simple for $n \geq 5$, $SO(n - 2)$ has no closed subgroup of codimension one. Therefore $G' = SO(n - 2)$, $SO(2) \times SO(n - 2)$ or $G' = SO(2) \times G''$, where G'' is a closed subgroup of $\text{O}(n - 2)$ of codimension 2. If the inclusion $G'' \to \text{O}(n - 2)$ is irreducible, then $n = 5, 6$.
by the case (A). Hence \(n = 6 \) and \(G'' = U(2) \). If the inclusion \(G'' \to O(n-2) \) is reducible, then \(n = 5 \) and \(G'' \) is a maximal torus of \(SO(3) \). Suppose \(k = 1 \). Then \(G' \) is a closed subgroup of \(O(n-1) \), and the inequality (c) implies \(\dim O(n-1)/G' \leq n-1 \). It can be assumed that the inclusion \(G' \to O(n-1) \) is irreducible. By the case (A), \(G' \) is one of the following listed in Table 5. Consequently, the case (B) occurs only when \(G \) is one of the following listed in Table 6 up to an inner automorphism of \(O(n) \). Here \(\rho_k: SO(k) \to O(k) \) is the canonical inclusion, and \(\theta^k \) is the trivial representation of degree \(k \). This completes the proof of Lemma 4.1.

Table 5

<table>
<thead>
<tr>
<th>(n-1)</th>
<th>(G')</th>
<th>(G' \to O(n-1))</th>
<th>(\dim O(n-1)/G')</th>
</tr>
</thead>
<tbody>
<tr>
<td>(n-1)</td>
<td>(SO(n-1))</td>
<td>(\rho_{n-1})</td>
<td>0</td>
</tr>
<tr>
<td>8</td>
<td>(Spin(7))</td>
<td>(I_1)</td>
<td>7</td>
</tr>
<tr>
<td>7</td>
<td>(G_2)</td>
<td>(\omega)</td>
<td>7</td>
</tr>
<tr>
<td>6</td>
<td>(U(3))</td>
<td>(\mu_3)</td>
<td>6</td>
</tr>
<tr>
<td>4</td>
<td>(U(2))</td>
<td>(\mu_2)</td>
<td>2</td>
</tr>
<tr>
<td>4</td>
<td>(SU(2))</td>
<td>(\mu_2^0)</td>
<td>3</td>
</tr>
</tbody>
</table>

Table 6

<table>
<thead>
<tr>
<th>(n)</th>
<th>(G)</th>
<th>(i: G \to O(n))</th>
<th>(\dim O(n)/G)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(n)</td>
<td>(SO(n-1))</td>
<td>(\rho_{n-1} \oplus \theta^1)</td>
<td>(n-1)</td>
</tr>
<tr>
<td>(n)</td>
<td>(SO(n-2))</td>
<td>(\rho_{n-2} \oplus \theta^2)</td>
<td>(2n-3)</td>
</tr>
<tr>
<td>(n)</td>
<td>(SO(n-2) \times SO(2))</td>
<td>(\rho_{n-2} \oplus \rho_2)</td>
<td>(2n-4)</td>
</tr>
<tr>
<td>9</td>
<td>(Spin(7))</td>
<td>(I_1 \oplus \theta^1)</td>
<td>(15-2n-3)</td>
</tr>
<tr>
<td>8</td>
<td>(G_2)</td>
<td>(\omega \oplus \theta^1)</td>
<td>(14-2n-2)</td>
</tr>
<tr>
<td>7</td>
<td>(U(3))</td>
<td>(\mu_3 \oplus \theta^1)</td>
<td>(12-2n-2)</td>
</tr>
<tr>
<td>7</td>
<td>(SO(3) \times SO(4))</td>
<td>(\rho_3 \oplus \rho_4)</td>
<td>(12-2n-2)</td>
</tr>
<tr>
<td>6</td>
<td>(SO(3) \times SO(3))</td>
<td>(\rho_3 \oplus \rho_3)</td>
<td>(9-2n-3)</td>
</tr>
<tr>
<td>6</td>
<td>(U(2) \times U(1))</td>
<td>(\mu_2 \oplus \mu_1)</td>
<td>(10-2n-2)</td>
</tr>
<tr>
<td>5</td>
<td>(U(2))</td>
<td>(\mu_2 \oplus \theta^1)</td>
<td>(6-2n-4)</td>
</tr>
<tr>
<td>5</td>
<td>(SU(2))</td>
<td>(\mu_2^0 \oplus \theta^1)</td>
<td>(7-2n-3)</td>
</tr>
<tr>
<td>5</td>
<td>(U(1) \times U(1))</td>
<td>(\mu_1 \oplus \mu_1 \oplus \theta^1)</td>
<td>(8-2n-2)</td>
</tr>
</tbody>
</table>

Proof of Lemma 4.2. It is sufficient to prove that there is no irreducible real representation of \(SO(n) \) of degree \(m \) for \(5 \leq n < m \leq 2n-2 \), and a non-trivial orthogonal representation of \(SO(n) \) of degree \(n \) is equivalent to the canonical representation \(\rho_n \) up to an inner automorphism of \(O(n) \). The second half is well known and a proof is given in our previous paper [12, Section 5]. To prove the first half, suppose that there is an irreducible real representation \(\sigma \) of \(SO(n) \) of degree \(m \) for \(5 \leq n < m \leq 2n-2 \). Then it is easy to see that the complexification \(\sigma^c \) of \(\sigma \) is irreducible. Let \(p: Spin(n) \to SO(n) \) be the covering pro-
jection. Then the composition σ^p is an irreducible complex representation of $Spin(n)$, which has a real form. Suppose $n = 2r$. Then $d(L_i) = z_iC_i$ for $1 \leq i \leq r - 2$, $d(L_{r-1}) = d(L_r) = 2^{r-1}$, $d(2L_i) = (r + 1)(2r - 1)$, $d(2L_{r-1}) = d(2L_r) = z_{r-1}C_{r-1}$, $d(L_i + L_{r-1}) = d(L_i + L_r) = 2^{r-1}(2r - 1)$, $d(L_{r-1} + L_r) = z_rC_{r-1}$. Therefore the following are the only possibilities for the irreducible complex representation of $Spin(2r)$ of degree m ($2r < m \leq 4r - 2$):

$$
\tau_r^+, \tau_r^-: Spin(2r) \rightarrow U(2^{r-1}) \quad \text{for} \quad r = 5
$$

$$
\tau, \tau^*: Spin(6) = SU(4) \rightarrow U(10).
$$

Here the representation space of τ is the second symmetric product of the canonical representation space C^4 of $SU(4)$, and τ^* is the dual representation. Hence τ, τ^* have no real form. It is known that the half spin representations τ_{2r}^+, τ_{2r}^- are not induced from a representation of $SO(2r)$. Suppose $n = 2r + 1$. Then $d(L_i) = z_{r+1}C_i$ for $1 \leq i \leq r - 1$, $d(L_r) = 2^r$, $d(2L_i) = r(2r + 3)$, $d(L_i + L_r) = 2^{r+1}r$, $d(2L_r) = 2^{2r}$. Therefore the following is the only possibility for the irreducible complex representation of $Spin(2r + 1)$ of degree m ($2r + 1 < m \leq 4r$):

$$
\tau_{2r+1}: Spin(2r + 1) \rightarrow U(2^r) \quad \text{for} \quad r = 3, 4.
$$

It is known that the spin representation τ_{2r+1} is not induced from a representation of $SO(2r + 1)$. Consequently, we have the desired result.

q.e.d.

8. Concluding remark. If $5 \leq n \leq m \leq 2n - 2$, then there exists only one linear $SO(n)$ action $\rho_n \oplus \theta^{n-m+1}$ on the standard m-sphere (see Theorem 4.11). This action is the restriction of a linear $SL(n, R)$ action. We shall show a counterexample for $n = 4$.

Recall that there is a surjective homomorphism $\pi: SO(4) \rightarrow SO(3)$. Through this homomorphism, $SO(4)$ acts on R^4 and the action is transitive on the unit sphere S^3 with the isotropy group $U(2)$. Also $SO(4)$ acts naturally on R^4 and the action is transitive on the unit sphere S^3 with the isotropy group $SO(3)$. Thus we have the diagonal action of $SO(4)$ on the unit sphere S^3 of $R^4 \oplus R^4$. This action is a linear $SO(4)$ action on S^3, the principal orbit type is $SO(4)/SO(2)$ and there are just two singular orbit types $SO(4)/SO(3)$ and $SO(4)/U(2)$.

Proposition 8.1. The above $SO(4)$ action on S^3 is not extendable to any continuous $SL(4, R)$ action on S^3.

Proof. Suppose that there exists a continuous $SL(4, R)$ action on S^3 which is an extension of the $SO(4)$ action. Let $x \in S^3$ be a point such
that $SO(4)_x = U(2)$. Then

1. $U(2) \subset SL(4, \mathbb{R}) \neq SL(4, \mathbb{R})$,
2. $\dim SL(4, \mathbb{R})/SL(4, \mathbb{R})_x \leq 6$.

Here we shall show first the following result.

Lemma 8.2. Let $u(2)$ be the Lie algebra of $U(2)$. Let g be a proper Lie subalgebra of $\mathfrak{sl}(4, \mathbb{R})$ which contains $u(2)$. Then $\dim g = 4, 6, 7$ or 10.

Proof. Recall

$$U(2) = \left\{ \begin{pmatrix} A & -B \\ B & A \end{pmatrix} \in M_4(\mathbb{R}) : A^tA + B^tB = I_2, A^tB = B^tA \right\}.$$

Put

$$u(2) = \left\{ \begin{pmatrix} X & -Y \\ Y & X \end{pmatrix} \in M_4(\mathbb{R}) : X + \imath X = 0, Y = \imath Y \right\},$$

$$\mathfrak{b}(2) = \left\{ \begin{pmatrix} X & -Y \\ Y & X \end{pmatrix} \in M_4(\mathbb{R}) : X = \imath X, Y + \imath Y = 0, \text{trace } X = 0 \right\},$$

$$\mathfrak{a} = \left\{ \begin{pmatrix} X & Y \\ Y & -X \end{pmatrix} \in M_4(\mathbb{R}) : X = \imath X, Y = \imath Y \right\},$$

$$\mathfrak{b} = \left\{ \begin{pmatrix} X & Y \\ Y & -X \end{pmatrix} \in M_4(\mathbb{R}) : X + \imath X = Y + \imath Y = 0 \right\}.$$

Then $\mathfrak{sl}(4, \mathbb{R}) = u(2) \oplus \mathfrak{b}(2) \oplus \mathfrak{a} \oplus \mathfrak{b}$ as a direct sum of $Ad(U(2))$ invariant linear subspaces. Here $\mathfrak{b}(2)$, \mathfrak{a} and \mathfrak{b} are irreducible, respectively, and $\dim \mathfrak{b}(2) = 3$, $\dim \mathfrak{a} = 6$, $\dim \mathfrak{b} = 2$. Moreover, we have $[\mathfrak{b}(2), \mathfrak{a}] = \mathfrak{b}$, $[\mathfrak{b}(2), \mathfrak{b}] = \mathfrak{a}$, $[\mathfrak{a}, \mathfrak{b}] = \mathfrak{b}(2)$, $[\mathfrak{a}, \mathfrak{a}] \subset u(2)$, $[\mathfrak{b}, \mathfrak{b}] \subset u(2)$. Therefore g is one of the following: $u(2)$, $u(2) \oplus \mathfrak{a}$, $u(2) \oplus \mathfrak{b}$, $u(2) \oplus \mathfrak{b}(2)$. Then $\dim g = 4, 10, 6$ or 7, respectively.

We now return to the proof of Proposition 8.1. By the condition (1), (2), it follows from Lemma 8.2 that $\dim SL(4, \mathbb{R})_x = 10$. Therefore the orbit $SL(4, \mathbb{R}) \cdot x$ contains the orbit $SO(4) \cdot x$ as a proper subset. Since the orbit $SO(4) \cdot x$ is isolated, the orbit $SL(4, \mathbb{R}) \cdot x$ must intersect a principal orbit of the $SO(4)$ action. Hence there is an element $g \in SL(4, \mathbb{R})$ such that $SO(4)_{x} = SO(2)$. Put $y = gx$. Then there is an embedding $SO(4) \cdot y \subset SL(4, \mathbb{R}) \cdot y = SL(4, \mathbb{R}) \cdot x$. But $\dim SO(4) \cdot y = \dim SL(4, \mathbb{R}) \cdot x = 5$. Hence $SO(4) \cdot y = SL(4, \mathbb{R}) \cdot x$. Since $SO(4) \cdot y$ is a principal orbit, we have $x \in SO(4) \cdot y$. This is a contradiction. Therefore there is no continuous $SL(4, \mathbb{R})$ action on S^6 which is an extension of the $SO(4)$ action.
References

Department of Mathematics
Faculty of Science
Yamagata University
Yamagata, 990
Japan