ESTIMATES FOR OPERATORS IN WEIGHTED L^{p,q}-SPACES

SALAH A. A. EMARA

(Received March 4, 1991, revised August 5, 1991)

Abstract. We give conditions on pairs of weight functions for which a certain operator defined on $\Omega \subseteq \mathbb{R}^2_+$ is bounded between weighted Lorentz spaces. The result is applied to obtain weighted estimates for the Laplace transform.

Introduction. Let f and w be nonnegative functions on \mathbb{R}^+. Then the distribution function of f relative to the measure $w(x)dx$ is defined by

$$f_w(s) = \int_{\{x : |f(x)| > s\}} w(x)dx = w\{x : |f(x)| > s\},$$

where $s > 0$ and the decreasing rearrangement of $|f|$ relative to $w(x)dx$ is obtained by $f^*(t) = \inf\{s : f_w(s) \leq t\}$ (see e.g. [4; 6, Chapter V]). Further if $0 < p, q \leq \infty$, then the weighted Lorentz spaces $L^{p,q}(w)$ are defined by

$$L^{p,q}(w) = \{f : \|f\|_{L^{p,q}(w)} < \infty\},$$

where

$$\|f\|_{L^{p,q}(w)} = \begin{cases} (q/p) \int_0^\infty \left[t^{1/p} f^w(t) \right]^{q} t^{-1} dt \right]^{1/q}, & 0 < p, \quad q < \infty \\ \sup_{t>0} t^{-1/p} f^w(t), & 0 < p \leq \infty, \quad q = \infty. \end{cases}$$

In case either $1 < p < \infty$ and $1 < q < \infty$ or $p = q = \infty$, $L^{p,q}(w)$ is a Banach space with norm equivalent to the quasi-norm $\|f\|_{L^{p,q}(w)}$.

Clearly if $w \equiv 1$ then $L^{p,q}(w) = L^{p,q}$, where $L^{p,q}$ are the usual Lorentz spaces. We denote by $L^p_*(\Omega)$, $0 < p \leq \infty$, the space of weighted measurable functions f for which $\|f\|_{L^p_*(\Omega)} = \|w^{1/p} f\|_{L^p(\Omega)}$ is finite, where $\|\cdot\|_{L^p(\Omega)}$ denotes the usual Lebesgue norm. Note that $L^{p,q}(w) = L^p_*(\mathbb{R}^+)$. If $1 < p < \infty$, $1 \leq q \leq \infty$ and $1/p + 1/p' = 1 = 1/q + 1/q'$, then

$$C^{-1} \|f\|_{L^{p,q}(w)} \leq \sup_{\|g\|_{L^{p',q'}(w)} < 1} \left| \int fg w dx \right| \leq C \|f\|_{L^{p,q}(w)}$$

1991 Mathematics Subject Classification. Primary 26D10; Secondary 42B10, 46E30.

Research supported in part by The American University in Cairo.
Throughout, p' denotes the conjugate index of p and is related to p by $p + p' = pp'$ with $p' = +\infty$ if $p = 1$. Similarly for other letters. Further, constants are denoted by C and may be different at different appearances but are always independent of the function in question. \mathbb{Z} denotes the set of integers.

ACKNOWLEDGEMENTS. The author would like to express his gratitude to Prof. H. Heinig, of Mathematics and Statistics Department, McMaster University, Ontario, Canada, for suggesting the problem in weighted inequalities, while supervising the author’s doctoral study.

LEMMA 1. Suppose $0 < p$, $q < \infty$. Then

(a) $\|f\|_{L^q(w)} = q \int_0^\infty f''(s)^{q/p} w(s)^{-1} ds$.

(b) If f is non-increasing on \mathbb{R}^+ and if $g(x) = \int_0^x w(s) ds < \infty$, whenever $w(x) > 0$, then

$$||f||_{L^p(w)} = (q/p) \int_0^\infty f(x)^{q/p} g(x)^{q/p - 1} w(x) dx.$$

Part (a) is due to Sawyer [5, Lemma 1] and Part (b) follows essentially along the same lines as in [5, Lemma 1].

PROOF. Part (a) follows, on evaluating the two integral of $qs^{q-1}(q/p)t^{q/p - 1}$ over the set $\{(t, s) : 0 < s < f''(t), 0 < t\}$. By permuting the s integration first we obtain the right hand side of (1) to the q-th power, i.e.,

$$\int_{\{(t, s) : 0 < s < f''(t), 0 < t\}} qs^{q-1}(q/p)t^{q/p - 1} ds dt = q \int_0^\infty \left(\int_0^{f''(s)} (q/p)t^{q/p - 1} dt \right) ds
= q \int_0^\infty s^{q-1} f''(s)^{q/p} ds .$$

Hence, Part (a) follows.

(b) is established by evaluating the two iterated integrals of

$$qx^{q-1}(q/p)g(y)^{q/p - 1} w(y) ,$$

over the set $M = \{(x, y) : 0 < x < f(y); 0 < y\}$. Performing the x integration over M on (3) first yields the right hand side of (b)

$$\int_0^\infty \left[q \int_0^{f(y)} x^{q-1} dx \right] (q/p)g(y)^{q/p - 1} w(y) dy = (q/p) \int_0^\infty f(y)^{q/p} g(y)^{q/p - 1} w(y) dy$$

and performing the y integration first yields the right hand side of (a)
where

$$\chi_{(0,f(y))}(x) = \begin{cases}
1, & \text{if } x \in (0, f(y)) \\
0, & \text{if } x \notin (0, f(y)).
\end{cases}$$

But $M = \{(x, y): x > 0, 0 < y < S(x)\}$ where $S(x) = \inf\{y: f(y) \leq x\}$. Therefore, the right hand side of (4) is equal to

$$\int_0^\infty x^{q-1}dx \int_{(0,S(x))} g(y)^{q/p-1}w(y)dy$$

But

$$f_w(x) = w(\{y: f(y) > x\}) = \int_{\{y: f(y) > x\}} w(y)dy = \int_0^{S(x)} w(y)dy = g(S(x)).$$

So that, from (5) and (6) we obtain

$$\|f\|_{L^p,w} = q \int_0^\infty x^{q-1}f_w(x)^{q/p}dx = (q/p) \int_0^\infty f(x)^q g(x)^{q/p-1}w(x)dx.$$
implies

\[(8) \quad \sup_{x>0} \left(\int_0^x w(t)dt \right)^{1/p} \|k(x, \cdot)/v\|_{L^r(v)} = C < \infty.\]

Conversely, the condition

\[(9) \quad \sup_{x>0} \left(\int_0^x w(t)dt \right)^{1/p} \|h/v\|_{L^r(v)(k(x, \cdot)/v)} = C < \infty\]

implies (7).

Proof. Let us prove (7) implies (8). Let \(f\) be a non-negative function. Then

\[(Kf)_w(\xi) = \int_{\{t \in (0, \infty): (Kf)(t) > \xi\}} w(t)dt \geq \int_{\{t \in (0, \infty): (Kf)(t) > \xi\}} w(t)dt\]

which implies

\[(10) \quad (Kf)_w(\xi) \geq \int_0^x w(t)dt, \quad \text{for} \quad 0 < \xi < (Kf)(x).\]

Inequalities (7) and (10) together with Lemma 1 yield

\[\|f\|_{L^r(v)} \geq C^{-1} \|Kf\|_{L^p(v)} = C^{-1} \left[\int_0^\infty q^{q-1} (Kf)_q(t)dt \right]^{1/q}\]

\[\geq C^{-1} \left[\int_0^\infty w(t)dt \left(\int_0^x w(t)dt \right)^{q/p} q^{-q-1} dt \right]^{1/q}\]

\[= C^{-1} \left(\int_0^x w(t)dt \right)^{1/p} \left(\int_0^\infty (k(x, t)/v(t)) f(t)v(t)dt \right).\]

Thus

\[\sup_{x>0} \left(\int_0^x w(t)dt \right)^{1/p} \|k(x, \cdot)/v\|_{L^r(v)} = C < \infty,\]

which proves that (7) implies (8).

Conversely, fix \(f \geq 0\) in \(L^r(v)\), \(s \leq r\) and choose \(\{x_j\}\) such that

\[(Kf)(x_j) = \int_0^\infty k(x_j, t)f(t)dt = 2^{-j}\]

for all \(j \in \mathbb{Z}\). Then, \(\{x_j\}_{j \in \mathbb{Z}}\) is an increasing sequence of positive numbers (note that

\[(Kf)(x)\]

is decreasing)

\[2^{-j+1} = 2^{-j} - 2^{-j+1} = (Kf)(x_j) - (Kf)(x_{j+1}) = \int_0^\infty (k(x_j, t) - k(x_{j+1}, t)) f(t)dt.\]
By Hölder’s inequality and Lemma 1 we obtain

\begin{equation}
\|Kf\|_{L^{p,q}(\omega)} = (q/p) \sum_j \int_{x_j}^{x_j+1} (Kf)^q(x) \, g(x)^{q/p-1} \, \omega(x) \, dx
\end{equation}

\[\leq (q/p) \sum_j (Kf)^q(x_j) \int_0^{x_j} g(x)^{q/p-1} \omega(x) \, dx\]

\[= 2^q \sum_j \left(\int_0^{x_j} g(x) \, dx \right)^{q/p} \left\{ \int_0^\infty [k(x_j, t) - k(x_{j+1}, t)] (h(t)/v(t))(v(t)/h(t)) \, f(t) \, dt \right\}^q\]

\[\leq 2^q \sum_j \left(\int_0^{x_j} g(x) \, dx \right)^{q/p} \|h/v\|_{L^{r,s}((k(x_j, \cdot) - k(x_{j+1}, \cdot))/v/h)} \|f\|_{L^{r,s}((k(x_j, \cdot))v/h)} .\]

Since \(k(x_j, x) - k(x_{j+1}, x) \leq k(x_j, x) \) we obtain

\[\|h/v\|_{L^{r,s}((k(x_j, \cdot) - k(x_{j+1}, \cdot))/v/h)} \leq \left[\int_0^\infty s^{t^{-1}} \left(\int_{x \in (0, \infty) : f(x) > t} (k(x, x)/h(x))v(x) \, dx \right)^{s/r} \, dt \right]^{1/s} = \|h/v\|_{L^{r,s}((k(x_j, \cdot))/v/h)} .\]

From this estimate, (9) and Minkowski’s inequality the previous inequality (11) shows that

\[\|Kf\|_{L^{p,q}(\omega)} \leq C \sum_j \|f\|_{L^{r,s}((k(x_j, \cdot) - k(x_{j+1}, \cdot))/v/h)} \]

\[= C \sum_j \left[\int_0^\infty s^{t^{-1}} \left(\int_{x \in (0, \infty) : f(x) > t} (k(x_j, x) - k(x_{j+1}, x))v(x)/h(x) \, dx \right)^{s/r} \, dt \right]^{q/s}\]

\[\leq C \left[\sum_j \left[\int_0^\infty s^{t^{-1}} \left(\int_{x \in (0, \infty) : f(x) > t} (k(x_j, x) - k(x_{j+1}, x))v(x)/h(x) \, dx \right)^{s/r} \, dt \right]^{p/s} \right]^{q/r}\]

\[\leq C \left[\int_0^\infty s^{t^{-1}} \left(\sum_j (k(x_j, x) - k(x_{j+1}, x))v(x)/h(x) \, dx \right)^{s/r} \, dt \right]^{q/s}\]

\[\leq C \left[\int_0^\infty s^{t^{-1}} \left(\sum_j v(x) \, dx \right)^{s/r} \, dt \right]^{q/s} = C \|f\|_{L^{r,s}((v))} .\]

where the second, the third and the last inequalities follow from \(r \leq q \), Minkowski’s inequality and

\[\sum_j (k(x_j, x) - k(x_{j+1}, x)) \leq Ch(x) ,\]

respectively. This completes the proof of the theorem.

We now state and prove the 2-dimensional weighted Lebesgue inequality for the \(K \)-operator for \(1 < p \leq q < \infty \).
THEOREM 3. Suppose $1 < p \leq q < \infty$ and that $k(x, y) = \prod_{i=1}^{2} k_i(x_i, y_i)$, $h(x) = \prod_{i=1}^{2} h_i(x_i)$, $0 \leq k_i(x_i, y_i) \leq C h_i(y_i)$, $i = 1, 2$. Define

$$(Kf)(x) = \int_{\mathbb{R}^2} k(x, y)f(y)dy,$$

so that there exists a sequence $\{x_j\}_{j \in \mathbb{Z}}$ satisfying

$$\int_{0}^{\infty} k_1(x_j, y_1)(K_2 f)(y_1, x_2) dy_1 = 2^{-j}, \quad \int_{0}^{\infty} k_2(x_j, y_2)f(y_1, y_2)dy_2 = 2^{-j}$$

where

$$(K_2 f)(y_1, x_2) = \int_{0}^{\infty} k_2(x_2, y_2)f(y_1, y_2)dy_2$$

for all $f(y_1, y_2) \geq 0$ with $(\int_{\mathbb{R}^2} w(x)f(x)^q dx)^{1/p} < \infty$. Suppose further that $w(x) = w(x_1, x_2)$ is a non-negative function defined on \mathbb{R}^2 and satisfies

$$(12) \quad \sup_{s > 0} \left(\int_{0}^{\infty} w(x_1, x_2)^{q/p} dx \right)^{1/q} \left(\int_{0}^{\infty} k_1(s, x_1)h^{1-p/q}(x_1)w(x_1, x_2)^{1-p} dx_1 \right) = C < \infty$$

for $i = 1, 2$. Then

$$(13) \quad \left(\int_{\mathbb{R}^2} w(x)^{q/p}(Kf)^q(x) dx \right)^{1/q} \leq C \left(\int_{\mathbb{R}^2} w(x)f(x)^q dx \right)^{1/p}.$$

PROOF. Suppose first that (12) holds. Then

$$(14) \quad \int_{\mathbb{R}^2} w(x)^{q/p}(Kf)^q(x) dx = \int_{\mathbb{R}^2} w(x)^{q/p} \left[\int_{0}^{\infty} \int_{0}^{\infty} k_1(x_1, y_1)k_2(x_2, y_2)f(y_1, y_2)dy_1 dy_2 \right]^{q} dx$$

$$= \int_{\mathbb{R}^2} w(x)^{q/p} \left[\int_{0}^{\infty} k_1(x_1, y_1) \left(\int_{0}^{\infty} k_2(x_2, y_2)f(y_1, y_2)dy_2 \right) dy_1 \right]^{q} dx$$

$$= \int_{\mathbb{R}^2} w(x)^{q/p} \left[\int_{0}^{\infty} k_1(x_1, y_1)(K_2 f)(y_1, x_2) dy_1 \right]^{q} dx,$$

where

$$(K_2 f)(y_1, x_2) = \int_{0}^{\infty} k_2(x_2, y_2)f(y_1, y_2)dy_2.$$

Now, fix $f \geq 0$ in $L^p_c(\mathbb{R}^2)$ and a positive increasing sequence $\{x_j\}_{j \in \mathbb{Z}}$ and define

$$\int_{0}^{\infty} k_1(x_j, y_1)(K_2 f)(y_1, x_2) dy_1 = 2^{-j}.$$

Then
By combining (14) and (15) one obtains
\[
\int_{\mathbb{R}^+} w(x)^{q/p}(Kf)^q(x) dx
= \int_0^\infty \sum_j \left(\int_{x_{j-1}}^{x_j} w^{q/p}(x_1, x_2) \left[\int_0^\infty k_1(x_1, y_1)(K_2f)(y_1, x_2) dy_1 \right]^q dx_1 \right) dx_2
\leq \int_0^\infty \left(\sum_j \int_0^\infty k_1(x_{j-1}, y_1)(K_2f)(y_1, x_2) dy_1 \right)^q \int_{x_{j-1}}^{x_j} w^{q/p}(x_1, x_2) dx_1 \right) dx_2
\leq 2^{2q} \int_0^\infty \sum_j \left(\int_{x_{j-1}}^{x_j} w^{q/p}(x_1, x_2) dx_1 \right)^q \left(\int_0^\infty \left[k_1(x_1, y_1) - k_1(x_{j-1}, y_1) \right] \right)
	imes (h_1^{1/p}(y_1)/w(y_1, x_2))(K_2f)(y_1, x_2)/h_1^{1/p}(y_1))w(y_1, x_2) dy_1 \right)^q dx_2.
\]

Hölder's inequality is applied to the second integral of the previous integral and one gets
\[
\int_{\mathbb{R}^+} w(x)^{q/p}(Kf)^q(x) dx \leq 2^{2q} \int_0^\infty \sum_j \left(\int_{x_{j-1}}^{x_j} w^{q/p}(x_1, x_2) dx_1 \right)^q \left[\int_0^\infty \left[k_1(x_1, y_1) - k_1(x_{j-1}, y_1) \right] \right)
	imes (h_1^{1/p}(y_1)/w(y_1, x_2))(K_2f)(y_1, x_2)/h_1^{1/p}(y_1))w(y_1, x_2) dy_1 \right)^q dx_2.
\]

Again since \(k_1(x_1, y_1) - k(x_{j-1}, y_1) \leq k_1(x_1, y_1) \) and on applying (12)
\[
\sup_{s > 0} \left(\int_0^s w^{q/p}w(x_1, x_2) dx_1 \right)^{1/q} \left(\int_0^\infty k_1(s, y_1)h_1(y_1)^{1/p}w(y_1, x_2)^{1/p}dy_1 \right)^{1/p} \leq C,
\]
for fixed \(x_2 \) one gets

\[
\int_{\mathbb{R}^+} w(x)^{q/p}(Kf)^q(x) dx \leq C \int_0^\infty \left[\int_0^\infty \left[\sum_j \left(k_1(x_1, y_1) - k_1(x_{j-1}, y_1) \right) \right)
	imes (K_2f)(y_1, x_2)/h_1^{1/p}(y_1))w(y_1, x_2) dy_1 \right)^q dx_2
\leq C \int_0^\infty \left[\int_0^\infty (K_2f)^p w(y_1, x_2) dy_1 \right]^{q/p} dx_2.
\]
where the last inequality follows from
\[\sum_j (k_1(x_j, y_i) - k_1(x_{j+1}, y_i)) \leq C(h_i(y_i)). \]

Again choose a positive increasing sequence \(\{x_i\}_{i \in \mathbb{Z}} \) such that
\[\int_0^\infty k_2(x, y) f(y_1, y_2) dy = 2^{-j}. \]

Then
\[2^{-(j+1)} = \int_0^\infty [k_2(x, y_2) - k_2(x_{j+1}, y_2)] f(y_1, y_2) dy. \]

By Minkowski’s inequality for \(p \leq q \) applied to the last integral of (16) and on proceeding as in the beginning of the proof we obtain
\[
\int_{R^d} w(x)^{q/p} (Kf)(x) dx \leq C \left(\int_0^\infty \left(\int_0^\infty (Kf)(y_1, x_2) w^{q/p}(y_1, x_2) dy_1 \right)^{p/q} dy_2 \right)^{q/p}.
\]

Next, from Hölder’s inequality, it follows that
\[
(17) \quad \int_{R^d} w(x)^{q/p} (Kf)(x) dx \leq C \left[\sum_j \left(\int_0^\infty \left(\int_0^\infty k_2(x, y) f(y_1, y_2) dy_2 \right)^{q/p} dy_1 \right)^{q/p} \left(\int_0^\infty \left(\int_0^\infty k_2(x, y_2) f(y_1, y_2) dy_2 \right)^{q/p} dy_1 \right)^{q/p} \right].
\]

Here, we used \(k_2(x, y_2) - k_2(x_{j+1}, y_2) \leq k_2(x, y_2) \) in the second integral of the last
inequality.

On applying (12),
\[\sup_{s > 0} \left(\int_0^s w^{q/p}(y_1, x_2)dx_2 \right)^{1/q} \left(\int_0^\infty k_2(s, y_2)h^{p/p}(y_2)w^{1-p}(y_1, y_2)dy_2 \right)^{1/p'} \leq C, \]
for fixed \(y_1 \) and
\[\sum_j [k_2(x_j, y_2) - k_2(x_{j+1}, y_2)] \leq h_2(y_2) \]
to the above inequality (17) one obtains
\[\int_{R^*_2} w(x)^{q/p}(Kf)^q(x)dx \leq C \left(\int_0^\infty \int_0^\infty w(y_1, y_2)f^{p}(y_1, y_2)dy_2dy_1 \right)^{q/p} = C \left(\int_{R^*_2} w(x)f(x)dx \right)^{q/p}, \]
which proves the theorem.

Here, we apply Theorems 2 and 3 to the Laplace transforms

\[(Lf)(x) = \int_0^\infty e^{-xt}f(t)dt, \quad x > 0 \]

and

\[(Lf)(x) = \int_{R^*_2} e^{-\langle x, y \rangle}f(y)dy, \quad x \in R^*_2, \]

respectively, where \(\langle x, y \rangle = x_1y_1 + x_2y_2, x_i, y_i \in R^*_+, i = 1, 2 \), complementing those results obtained in [1], [3].

Theorem 4. Suppose \(1 < s < r < q < \infty, 0 < p < \infty \). If \(w, v \) are non-negative weight functions on \(R^*_+ \), then

\[\|Lf\|_{L^p(w)} \leq C\|f\|_{L_{s}^{\infty}(0)}, \quad \text{for all } f \geq 0 \]
implies

\[\sup_{x > 0} \left(\int_0^x w(t)dt \right)^{1/p} \|e^{-x/v}\|_{L_{s}^{\infty}(0)} = C < \infty. \]

Conversely, the condition

\[\sup_{x > 0} \left(\int_0^x w(t)dt \right)^{1/p} \|1/v\|_{L_{s}^{\infty}(e^{-x-w})} = C < \infty \]
implies (20).

The proof follows from Theorem 2 and (18) with \(K = L \).
THEOREM 5. Suppose $1 < p \leq q < \infty$. If w and v are non-negative weights and satisfy

$$
\sup_{s > 0} \left(\int_{0}^{s} w(x_1, x_2)^{q/p} dx_1 \right)^{1/q} \left(\int_{0}^{\infty} e^{-sx} w(x_1, x_2)^{1/p'} dx_1 \right)^{1/p'} = C < \infty,
$$

$i = 1, 2$. Then,

$$
\left(\int_{\mathbb{R}^2_+} w(x)^{q/p} (Lf)^q(x) dx \right)^{1/q} \leq C \left(\int_{\mathbb{R}^2} w(x)f(x)^p dx \right)^{1/p}.
$$

Again, the proof follows from (19) and Theorem 3 with $K = L$.

REFERENCES