DIMENSION OF COMPACT GROUPS AND THEIR REPRESENTATIONS

SHUICHI TAKAHASHI

(Received August 10, 1953)

In Pontrjagin’s theory of duality for compact abelian groups, the following theorem is known:¹)

Let \(G \) be a compact abelian group, \(G^* \) the dual group. Then the topological dimension of \(G \), in the sense of Lebesgue, is equal to the rank of discrete abelian group \(G^* \).

It was Prof. T. Tannaka who has called my attention to the lack of corresponding theorem in non-commutative case.

I intend to give, in this note, a theorem of this kind in the following form:

THEOREM A. Let \(G \) be an arbitrary compact group, \(G^\wedge \) the aggregate of continuous finite dimensional representations of \(G \), \(C[G^\wedge] \) the algebra over the complex numbers \(C \) generated by the coefficients of representations in \(G^\wedge \), i.e., the “representative ring” of \(G \) in the sense of C. Chevalley². Then the topological dimension of \(G \), in the sense of Lebesgue, is equal to the transcendental degree of \(C[G^\wedge] \) over \(C \).

Another form of corresponding theorem, which may be true, is the following:

THEOREM B. Let \(\overline{G} \) be the space consisting of conjugate classes of a compact group \(G \), \(G^\kappa \) the characters of representations in \(G^\wedge \), \(C[G^\kappa] \) the algebra over \(C \) generated by \(G^\kappa \). Then the topological dimension of \(\overline{G} \) is equal to the transcendental degree of \(C[G^\kappa] \) over \(C \).

In spite of its natural formulation, I cannot prove this theorem at present and merely justified it for connected compact Lie groups.

1. Notations. We shall use the following notations for an arbitrary compact group \(G \):

\(n(G) \): the topological dimension of \(G \) in the sense of Lebesgue.

\(n(G^\wedge) = \langle C[G^\wedge] : C \rangle \): the transcendental degree of “representative ring” \(C[G^\wedge] \) over the complex number field \(C \).

\(r(G) \): the topological dimension of the space \(G \) consists of conjugate classes of \(G \). In case the group \(G \) is a connected compact Lie

1) L. PONTRJAGIN, Topological groups (1939), p.148 Example 49.
2) C. CHEVALLEY, Theory of Lie groups I (1946), p.188.
group, \(r(G) \) is the rank of \(G \) in the sense of H. Hopf i.e., dimension of a maximal abelian subgroup in \(G \) by the well known "principal axis theorem".

\[
\text{\(r(G^*) = \langle C[G^*] : C \rangle \)}: \text{the transcendental degree of "characterring" \(C[G^*] \) over} C.
\]

2. **Auxiliary theorems.**

Theorem 1 \(n(G) = 0 \) if and only if \(n(GA) = 0 \).

Proof. Assume \(n(G) = 0 \), then any \(D \in G\wedge \) maps \(G \) onto a 0-dimensional Lie group, i.e., a finite group. By a suitable coordinate transformation every coefficient \(d_{ij}(x) \) of \(D \) becomes algebraic, therefore \(n(G\wedge) = 0 \). On the other hand, if \(n(G\wedge) = 0 \), then every coefficient \(d_{ij}(x) \) of \(D \in G\wedge \) is algebraic; in particular its character \(\sum d_{ii}(x) \) is algebraic. Hence, by a theorem of Weil\(^3\), \(D(G) \) is a finite group. Since \(G \) has sufficiently many representations, this means that \(n(G) = 0 \), q.e.d.

Theorem 2 \(G \) is connected if and only if every element in \(C[G\wedge] \) is constant or transcendental.

Proof. Assume \(G \) be not connected and put \(G_0 \) for the connected component containing the identity \(1 \). Then \(G/G_0 \) is a 0-dimensional group and \(C[(G/G_0)\wedge] \subseteq C[G\wedge] \). By preceding theorem there exists a non-constant algebraic element in \(C[(G/G_0)\wedge] \) and a priori in \(C[G\wedge] \).

Conversely, if \(C[G\wedge] \) contains a non-constant algebraic element \(f(x) \); then \(f(x) \) is a finite valued continuous function on \(G \). Therefore \(G \) cannot be connected, q.e.d.

3. **Proof of Theorem A.** The proof is accomplished by a series of elementary lemmas.

Lemma 1. \(n(G) \leq n(G\wedge) \).

Proof. Assume first \(G \) be a compact Lie group, then \(G \) has a faithful representation \(D(x) \in G\wedge \). Since \(G \) has a neighborhood of the identity homeomorphic to the euclidean \(n \)-space \(\mathbb{R}^n \) \((n = n(G))\), it follows that among the coefficients \(d_{ij}(x) \) of \(C(x) \) there exist \(n \) topologically, hence algebraically independent elements. Therefore \(n(G\wedge) \geq n(G) \).

Next \(G \) be arbitrary, there exists, for any finite number \(n^* \leq n(G) \), a sufficiently small invariant subgroup \(H \subseteq G \) such that \(G/H \) is a Lie group and \(n(G/H) \geq n^* \).

3) These theorems 1, 2 are founded independently by Y. KAWADA. His results are published in Japanese periodical "Shijo-Sugaku-Danwakai". Weil's theorem quoted in the proof is in C.R. Paris 198, 1739-42; 199, 180-2(1934).

4) e.g., CHEVALLEY, I.c.\(^*\) p.211.

5) e.g., PONTRJAGIN, I.c.\(^*\) p.211 F). Separability assumption is not essential in this proof.
Obviously \(n(G^\wedge) \geq n(G/\ll)^\wedge \geq n(G/\ll) \geq n^* \). This means \(n(G^\wedge) \geq n(G) \). q.e.d

Lemma 2. If \(G \) is connected \(C[G^\wedge] \) has no zero-divisors.

Proof. Let \(f_1, f_2 \in C[G^\wedge] \) be \(f_1(x)f_2(x) = 0 \) everywhere on \(G \). We must show that at least one of \(f_1, f_2 \) is zero everywhere. Since the problem concerns two elements \(f_1, f_2 \in C[G^\wedge] \) it is sufficient to assume that \(G \) is a Lie group. Now \(f_1, f_2 \) are analytic functions on \(G \), hence, by a property of analytic functions, at least one of \(f_1, f_2 \) is zero in a sufficiently small neighborhood of the identity.

Since \(G \) is connected this holds everywhere.

Lemma 3. For the proof of \(n(G) \geq n(G^\wedge) \) it is sufficient to assume that \(G \) is connected.

Proof. Let \(G_0 \) be the connected component containing \(1 \). At first it holds obviously \(n(G) \geq n(G_0) \). We show that \(n(G_0^\wedge) \geq n(G_0) \). For this we put \(n(G_0^\wedge) = n \) and assume \(n \) is finite. Take \(n+1 \) arbitrary elements \(f_1, \ldots, f_{n+1} \in C[G^\wedge] \) and a sufficiently small invariant subgroup \(\ll \) such that \(H = G/\ll \) is a Lie group and \(f_1, \ldots, f_{n+1} \) are functions on \(H \). If \(H_0 \) is the component in \(H \), \(H_0 = G_0/\ll \). \(C[H_0^\wedge] \subseteq C[G^\wedge] \) hence \(n(H_0^\wedge) \leq n \).

If \(H = \sum_{i=1}^h s_i H_0 \) is a coset decomposition of \(H \) by \(H_0 \), the set of elements in \(C[H^\wedge] \) which vanish on \(s_i H_0 \) constitutes an ideal \(\Psi_i \) in \(C[H^\wedge] \) such that \(C[H_0^\wedge]/\Psi_i \cong C[H_0]^\wedge \) has no zero-divisors by **Lemma 2** and its transcendental degree \(n(H_0^\wedge) \leq n \). Hence there exist \(h = [H:H_0] \) polynomials \(P_i \) such that

\[
P_i(f_1, \ldots, f_{n+1}) \in \Psi_i \quad (i = 1, 2, \ldots, h).
\]

Since \(\bigcap_{i=1}^h \Psi_i = 0 \), \(P_i(f_1, \ldots, f_{n+1}) = 0 \). This means that \(f_1, \ldots, f_{n+1} \) are algebraically dependent i.e., \(n(G^\wedge) \leq n \). q.e.d.

Lemma 4. If \(G \) is connected \(n(G) \geq n(G^\wedge) \).

Proof. Let \(n \leq n(G^\wedge) \) be a finite number, we want to show that \(n(G) \geq n \).

We take \(D_0 \in G^\wedge \) such that, among the coefficients \(d_{ij}(x) \) of \(D_0 \), there exist \(n \) algebraically independent elements in \(C[G^\wedge] \). Put \(\ll = \ker(D_0) = 1 \). Then \(H = G/\ll \) is a Lie group with \(D_0 \) as a faithful representation. Hence by Kampen’s theorem\(^6\) coefficients of \(D(x), D(x) \) generate the algebra \(C[G^\wedge] \). Let \(M(H) \) be the associated algebraic group of \(H \), then by definition the point \((d_{ij}(x), d_{ij}(x)) \) in complex 2r-space \(C^{2r} \), where \(r = \deg D \), is a generic point of \(M(H) \) over a suitable field \(k \). Therefore \(M(H) \) is the set of specializations of the point \((d_{ij}(x), d_{ij}(x)) \) over \(k \) and complex dimension of \(M(H) = <C[H^\wedge] : C> \geq n \).

\(^6\) e.g., **CHEVALLEY**, L.c.\(^3\), p.193-4.

\(^7\) For the definition and properties of associated algebraic group used in the following see **CHEVALLEY**, L.c.\(^3\) pp. 194-202.
On the other hand, if \(h = n(H) \) is the dimension of \(H \), then \(M(H) \) is homeomorphic to \(H \times \mathbb{R}^h \), therefore \(2h \geq 2n \), i.e., \(h \geq n \).

More precisely, any \(A \in H_1 = M(H) \cap \mathfrak{l}(r) \) (unitary restriction) is associated with \(a \in H \) by

\[
A(f) = f(a) \quad \text{for} \quad f \in \mathbb{C}[H^\wedge]
\]

(duality theorem). \(\mathbb{C}[H^\wedge] \subset \mathbb{C}[G^\wedge] \) and \(A \) is a representation of \(\mathbb{C}[H^\wedge] \). We shall show that \(A \) can be extended continuously on \(\mathbb{C}[G^\wedge] \); continuity means that \(A \to 1 \) implies convergency of extension \(\tilde{A} \):

\[
\tilde{A}(f) \to f(1) \quad \text{for} \quad f \in \mathbb{C}[G^\wedge].
\]

Since \(H_1 \) has a neighborhood of the identity homeomorphic to \(\mathbb{R}^h \), this continuous one to one image in \(G_{\mathbb{A}} = G \) has dimension \(h \). Hence \(n(G) \geq h \geq n \).

Consider couples \((F_i, A_i)\) consisting of a sub-algebra \(F_i \) generated by a set of representations \(\{D_1, D_2, D_3, \ldots\} \) in \(G^\wedge \) and continuous extensions \(A_i \) on \(F_i \) of every \(A \in H_1 \).

\[
(F_i, A_i) \leq (F_2, A_2)
\]

means \(F_i \subset F_2 \) and each \(A_i \) coincides on \(F_i \) with unique \(A_2 \). Then all couples \((F_i, A_i)\) satisfy condition of Zorn's lemma and there exists a maximal couple \((F_\infty, A_\infty)\). We must show \(F_\infty = \mathbb{C}[G^\wedge] \). Otherwise there would exists \(D \in G^\wedge \) such that at least one coefficient of \(D \) or \(D \) does not belong to \(F_\infty \). Take one of such coefficient \(d_i(x) = f \) and define

1) \(A'_i(f) = f(1) \) if \(f \) is transcendental over \(F_\infty \).

2) If \(f \) is algebraic over \(F_\infty \), take an irreducible equation satisfied by \(f \) (since \(\mathbb{C}[G^\wedge] \) is without zero-divisors by Lemma 2):

\[
f g_{a_1} + f g_{a_2} + \cdots + g_0 = 0 \quad (g_i \in F_\infty).
\]

By assumption \(A \to 1 \) implies \(A_\infty(g_i) \to g_i(1) \), there exists a root of equation

\[
X^n A_\infty(g_{a_1}) + X^{a_2} A_\infty(g_{a_2}) + \cdots + A_\infty(g_0) = 0
\]

such that \(A \to 1 \) implies \(\alpha \to f(1) \). We define then

\[
A'_i(f) = \alpha.
\]

Thus we can extend \(A_\infty \) to the algebra \(\mathbb{C}[F_\infty, D, \bar{D}] \) as an algebra-representation with continuity preserved.

Now consider a direct product

\[
\mathfrak{B} = \bigotimes \mathfrak{G}_1 (r_i, D_i) \times \mathfrak{G}_2 (r_i, D_i) \times \cdots \mathfrak{G}_m (r_i, D_i) \times \mathfrak{G}_m (r_i, D_i)
\]

where \(\mathfrak{G}_i (r_i, D_i) = GL(\mathbb{C}[D_i]) \) means complex general linear group of degree \(r_i D_i \). In this product algebra-representations of \(C_\infty F_\infty, D, \bar{D} \) constitute a generalized algebraic group \(\mathfrak{B} \) in the sense that its elements are defined by an infinity of algebraic equations. \(M \in \mathfrak{M} \) implies \(M' = M^{\perp} \in \mathfrak{Y} \) and the subset
satisfying conjugate condition is precisely \[\mathcal{M} \cap [U(r(D_1)) \times \cdots]. \] In particular above \(A' \) determines

\[M = A_\omega(D_1) \times A_\omega(D_1) \times \cdots \times A_\omega(D) \times A_\omega(D') \]

which is an element in \(\mathcal{M} \) such that on \(F_\omega \) its components are unitary. Now decompose \(M \) into a unitary matrix \(M_1 \) and a positive definite hermitian matrix \(M_2: M = M_1 \cdot M_2 \) continuously. It is easy to verify that \(M_1 \in \mathcal{M} \) again. Define \(A_\omega \) on \(D \) by

\[M_1 = A_\omega(D_1) \times A_\omega(D_1) \times \cdots \times A_\omega(D) \times A_\omega(D'), \]

then \(A_\omega \) is an algebra-representation of \(C[F_\omega, D, D] \) preserving conjugate condition. This would imply \((C[F_\omega, D, D], A_\omega) \) contrary to the hypothesis. q.e.d.

Remark. After completion of above proof of Theorem A, I found another proof of Theorem A for separable compact groups by using a result of A. Weil\(^8\) which states that, if \(G \) is a compact separable group, \(U \) an invariant subgroup such that \(G/U \) is a Lie group, then \(n(G) \geq n(G/U) \). Since \(n(G/U) \geq n(G) \) for sufficiently small subgroup \(U \) and \(n(G) = \lim_{U \to 0} n(G/U) \). On the other hand \(n(G^0) = \lim_{U \to 0} n(G(U^0)) \) is obvious. First part of the proof of Lemma \(4 \) gives a proof of \(n(G/U) = n((G/U)^0) \), therefore \(n(G) = n(G^0) \).

4. **Proof of Theorem B for connected compact Lie groups.**

Every group considered in this section are assumed to be connected compact Lie group.

Lemma 5. If \(\overline{G} \) is a finite sheeted covering group of \(G \), then \(\pi(\overline{G}) = \pi(G) \), \(\pi(\overline{G}^0) = \pi(G^0) \).

Proof. \(\pi(\overline{G}) = \pi(G) \) is obvious by Hopf’s definition of rank. \(\pi(\overline{G}^0) \geq \pi(G^0) \) is a consequence of \(\overline{G}^0 \supseteq G^0 \). Now let \(D(x) \) be an irreducible representation in \(\overline{G}^0 \) and \(\chi(x) \) be the character of \(D(x) \). Put \(G = \overline{G}/N \) with \(N \) as a finite central subgroup of \(\overline{G} \). By Schur’s lemma,

\[D(x) = \lambda(x) \cdot 1 \quad (x \in N), \]

where \(\lambda(x) \) is a root of unity such that \(\lambda(x)^n = 1 \) if \(n \) denotes the order of \(N \). Hence the representation

\[\overline{D}(x) = \cdots \times \frac{D(x)}{n} \]

maps \(N \) into \(1 \), i.e., this is a representation of \(G = \overline{G}/N \). This means \(x^* \subseteq G^* \), therefore, every character \(x \in G^* \) is algebraic over \(G^* \). Hence \((\overline{G}^0) \leq \pi(G^0) \), q.e.d.

Lemma 6. If \(G \) is a direct product of \(G_1 \) and a central subgroup \(G_2 \) of \(G \), then \(\pi(G) = \pi(G_1) + \pi(G_2) \), \(\pi(G^0) = \pi(G_1^0) + \pi(G_2^0) \).

DIMENSION OF COMPACT GROUPS ETC. 183

PROOF. Let T_1 be a maximal torus of G_1, $T_2 = G_2$, then $T_1 \times T_2$ is a torus in G; hence $r(G_1) + r(G_2) \leq r(G)$. On the other hand if T is a maximal torus in G, then, since G_2 is central, $G_2 \subseteq T$. As T/G_2 is a torus in $G_1 = G/G_2$, dimension of $T/G_2 \leq r(G_1)$. Thus dimension of $T = r(G) \leq r(G_1) + r(G_2)$.

Next, every irreducible representation of G is a Kronecker product of irreducible representations of G_1 and G_2. Therefore every irreducible character x of G is a product $x = x_1 x_2$ of characters of G_1 and G_2, i.e., $r(G^*) \leq r(G_1^*) + r(G_2^*)$. Conversely, if x_1, \ldots, x_{v_1} and $\psi_1, \ldots, \psi_{v_2}$ are algebraically independent characters of G_1^* and G_2^* respectively, then $x_1 \psi_1(i=1, \ldots, v_1, j=1, \ldots, v_2)$ are algebraically independent. For if

$$F(x_1 \psi_1, \ldots, x_{v_1} \psi_1, \ldots, x_{v_2} \psi_2) = 0$$

is a polynomial in r_{v_2} arguments, it can be written in the form:

$$\sum_{x_1, \ldots, x_{v_2}} F_{x_1, \ldots, x_{v_2}}(x_1, \ldots, x_{v_1}) \psi_1^{x_1} \cdots \psi_2^{x_{v_2}} = 0$$

where $F_{x_1, \ldots, x_{v_2}}(x_1, \ldots, x_{v_1})$ are polynomials in x_1, \ldots, x_{v_1}. If we fix $x \in G_1$ then $F_{x_1, \ldots, x_{v_2}}(x_1(u), \ldots, x_{v_2}(x))$ is a complex number $= 0$ by hypothesis on ψ's. This implies by hypothesis on x's. Hence the equation $F \equiv 0$, and $r(G^*) \geq r(G_1^*) + r(G_2^*)$. q.e.d.

As is well known, every connected compact Lie group G has a finite sheeted covering group \tilde{G} such that

$$\tilde{G} = G_1 \times G_2$$

where G_1 is a simply connected semi-simple compact Lie group and G_2 a torus. Hence by Lemmas 5, 6, it is sufficient to prove $r(G) = r(G^*)$ for simply connected semi-simple compact Lie groups. In the following let G be such a group.

Lemma 7. $r(G) \leq r(G^*)$.

Proof. There exists one to one correspondence between representations of G and those of its Lie algebra \mathfrak{g}. Every irreducible representation of \mathfrak{g} is determined by a highest weight A, which can be written uniquely by Cartan basis A_1, \ldots, A_r, $r = r(\mathfrak{g})$, as

$$A = m_1 A_1 + \cdots + m_r A_r \quad (m_i \text{ integers } \geq 0).$$

Conversely to every such weight A, there exists unique irreducible representation of \mathfrak{g} having A as highest weight. Let D_1, \ldots, D_r and x_1, \ldots, x_r be the irreducible representations of \mathfrak{g} and characters of G respectively corresponding to the weights A_1, \ldots, A_r.

We show that $C[G^*] = C[x_1, \ldots, x_r]$. Take an irreducible character $x \in G^*$ such that its weight is

9) e.g. PONTRJAGIN, loc. cit. p. 282 THEOREM 87.
\[A = m_1 A_1 + \cdots + m_r A_r \quad (m_i \text{ integers } \geq 0) \]

and that if \(A' < A \) then the character \(x' \) with highest weight \(A' \) is contained in \(C[x_1, \ldots, x_r] \). Irreducible representation of \(G \) which has \(A \) as its highest weight is contained in the Kronecker product

\[
\prod_{i=1}^{m_1} D_i \times \cdots \times \prod_{j=1}^{m_r} D_j
\]

as the irreducible representation with highest weight \(A \) (Cartan composite). Hence

\[x + x' + x'' + \cdots = x_1^{m_1} x_2^{m_2} \cdots x_r^{m_r} \]

where \(x', x'', \ldots \) are characters with highest weight \(A', A'', \ldots < A \). By hypothesis on \(x, x', x'', \ldots \in C[x_1, \ldots, x_r] \), hence \(x \in C[x_1, \ldots, x_r] \) and \(C[G^*] \subseteq C[x_1, \ldots, x_r] \) by an inductive argument. \(\text{q.e.d.} \)

Lemma 8. \(r(G) \leq r(G^*) \).

Proof. We show that the characters \(x_1, \ldots, x_r \) corresponding to a Cartan basis \(A_1, \ldots, A_r \) of highest weights are algebraically independent. Let \(F(x_1, \ldots, x_r) = 0 \) be a polynomial. If \(\mathfrak{h} \) is a maximal abelian subalgebra of the Lie algebra \(\mathfrak{g} \) of \(G \), then

\[x_i(x) = \exp \lambda_i \mathfrak{h} + \exp \lambda'_i \mathfrak{h} + \cdots + \lambda''_i \mathfrak{h}, \text{ etc.} \]

where \(x = \exp \mathfrak{h} \) (\(\mathfrak{h} \in \mathfrak{h} \)). Inserting into the polynomial \(F = \sum a_{n_1} \cdots a_{n_r} x_1^{n_1} \cdots x_r^{n_r} \), we see that highest term exists in the sum

\[\sum a_{n_1} \cdots a_{n_r} \exp (n_1 A_1(h) + \cdots + n_r A_r(h)). \]

Now if \(n_1 A_1 + \cdots + n_r A_r \) is highest, then \(a_{n_1 \cdots n_r} = 0 \). By repeated application of this argument we arrive at \(F \equiv 0 \), i.e., \(r(G^*) \geq r = r(G) \). \(\text{q.e.d.} \)

Mathematical Institute, Tohoku University.