Transactions of the Materials Research Society of Japan
Online ISSN : 2188-1650
Print ISSN : 1382-3469
ISSN-L : 1382-3469
Regular Papers
Direct Interaction Force and Adsorption Behavior of Fibrinogen on Well-Characterized Polymer Brush Surfaces
Sho SakataYuuki InoueKazuhiko Ishihara
Author information

2016 Volume 41 Issue 1 Pages 51-54


Adsorption behavior of fibrinogen was examined in terms of the direct interaction force operating between fibrinogen and surfaces. As model surfaces, well-characterized polymer brush surfaces were systematically prepared by surface-initiated atom transfer radical polymerization method using zwitterionic, cationic, anionic, and hydrophobic monomers. The direct interaction forces between fibrinogen and the polymer brush surfaces were quantitatively evaluated by the force-versus-distance curve measurement of atomic force microscopy using fibrinogen-immobilized probe. Besides, the amount of fibrinogen adsorbed on these polymer brush surfaces was quantified by surface plasmon resonance measurement. The cationic, anionic, and hydrophobic polymer brush surfaces strongly interacted with fibrinogen, and a large amount of fibrinogen adsorbed on them. On the other hand, in the case of the zwitterionic polymer brush surface, direct interaction force with fibrinogen was weak, and fibrinogen adsorption was dramatically suppressed. It was quantitatively indicated that the strength of direct interaction force operating between fibrinogen and surfaces would influence on fibrinogen adsorption on surfaces.

Information related to the author
© 2016 The Materials Research Society of Japan
Previous article Next article