Short Communication

Early Ultrastructural Changes in the Dorsal Skin Epidermis of Wistar-Derived Hypotrichotic WBN/ILA-\(Ht\) Rats after UVB-Irradiation

Valeria Malcotti\(^1\), Akira Yasoshima\(^1\), Koji Uetsuka\(^1\), Hiroyuki Nakayama\(^1\), and Kunio Doi\(^1\)

\(^1\)Department of Veterinary Pathology, Faculty of Agriculture, The University of Tokyo, 1–1–1 Yayoi, Bunkyo-ku, Tokyo 113–8657, Japan

Abstract: Early ultrastructural changes in the dorsal skin epidermis of Wistar-derived hypotrichotic WBN/ILA-\(Ht\) rats were examined for up to 12 hours after UVB-irradiation (10 kJ/m\(^2\)) (12 HAI). The first change appeared at 3 HAI as swelling and/or vacuolation of mitochondria in the spinous and basal cells. The number of keratinocytes with such mitochondrial changes decreased thereafter. At 6 HAI, apoptosis of basal cells developed. These cells showed shrinkage of cell bodies with condensed or fragmented nuclei and dark cytoplasm due to densely packed bundles of tonofilaments. At the same time, keratinocytes with prominent nucleoli were also observed in the basal and suprabasal layers. At 12 HAI, the number of keratinocytes with prominent nucleoli increased, and mild and focal intercellular edema developed mainly in the basal layer. In addition, a small number of apoptotic basal cells were still observed. The present ultrastructural findings supported the histopathological findings previously reported by our research group. (J Toxicol Pathol 2001; 14: 173–177)

Key words: dorsal skin epidermis, WBN/ILA-\(Ht\) rat, UVB-irradiation, ultrastructure

The UV-induced dermatoses and tumors are said to have a close relation with the depletion of the ozone layer and a consequent increase in the intensity of ultraviolet (UV) radiation reaching the earth’s surface. Among UVA (320–400 nm), UVB (290–320 nm) and UVC (200–290 nm), UVB is called the sunburn spectrum or the erythemal band because it causes sunburn reaction with erythema in human skin\(^1\). Absorption of UVB occurs primarily in the epidermis\(^2\), causing molecular damage to nucleic acid\(^3\) and proteins\(^4,5\).

The cellular damage in the skin caused by UVB-irradiation is histopathologically characterized by formation of so-called “sunburn” cells in the basal and suprabasal layers of the epidermis\(^6,7\). Under light microscope, sunburn cells show eosinophlic cytoplasm with or without shrunken and condensed nucleus which is strongly stained with terminal deoxy nucleotidyl transferase (TdT)-mediated dUTP-digoxigenin nick end labeling (TUNEL) method for the \textit{in situ} detection of fragmented DNA\(^8\). These cells are considered as a cell population of keratinocytes undergoing apoptosis\(^9\), and the induction of apoptosis by UVB irradiation has been considered to play a physiologically important role in eliminating DNA-damaged cells from the skin\(^10\).

The aim of this study is to clarify the ultrastructural characteristics of UVB-induced early lesions in the dorsal skin epidermis of WBN/ILA-\(Ht\) rats (HtR). HtR has an autosomal dominant gene (\(Ht\): dominant hypotrichosis)\(^11\) and is considered to be a useful laboratory animal for dermatotoxicity study\(^12-15\).

Six 7-week-old HtRs (Saitama Experimental Animal Supply Co., Saitama) were used. They were individually kept in isolator cages (Niki Shoji Co., Ltd., Tokyo) in an animal room under controlled conditions (temperature, 23 ± 2°C; relative humidity, 55 ± 5%) and fed pelleted diet, MF (Oriental Yeast Co., Tokyo) and tap water \textit{ad libitum} throughout the experimental period.

The dorsal skin of 4 animals was irradiated with artificial UVB light (wavelength: 290–320 nm) (ATTO Co., Tokyo) for 70 minutes at 10 cm below the light source (irradiation dose: 10 kJ/m\(^2\)). The dose and exposure time were decided based on the results of the previous studies\(^8,16\). One skin sample/animal was obtained from 4 irradiated animals with a 6 mm biopsy punch (Nagatoishi Co., Tokyo) under ether anesthesia at 1, 3, 6 and 12 hours after the
Skin Ultrastructure after UV-Irradiation

irradiation (HAI), respectively. In addition, one skin sample/animal was obtained from 2 unirradiated control animals in the same way.

Small pieces of the skin samples were fixed in 2.5% glutaraldehyde in 0.1 M phosphate buffer (pH 7.4), postfixed in 1% osmium tetroxide in the same buffer, and embedded in EPOK 812 (Ohken Co., Ltd., Tokyo). Ultrathin sections were double-stained with uranyl acetate and lead citrate and observed under a JEM-100EX electron microscopy (JEOL Co., Ltd., Tokyo).

At 1 HAI, ultrastructural features of the dorsal skin in the UVB-group were similar to those in the control one (Figs. 1a and b). At 3 HAI, swelling and/or vacuolation of mitochondria developed in keratinocytes, and these ultrastructural changes were considered to correspond to intracytoplasmic edema of keratinocytes observed under light microscope8,16. Such mitochondrial changes were generally seen in keratinocytes in the spinous layer, but they sometimes extended to keratinocytes in the basal layer (Fig. 2). The number of keratinocytes with mitochondrial swelling and/or vacuolation decreased thereafter.

The most prominent ultrastructural change at 6 HAI

![Fig. 1. Dorsal skin epidermis of a control rat (a) and a UVB-irradiated rat at 1 HAI (b). There is no difference between (a) and (b). × 3,000.](image1)

![Fig. 2. Dorsal skin epidermis of a UVB-irradiated rat at 3 HAI. Prominent mitochondrial swelling and vacuolation in spinous and basal cells. × 6,250.](image2)
was an appearance of apoptotic basal cells. These cells unexceptionally decreased in their size and were generally characterized by marked condensation of nuclear chromatin and/or nuclear fragmentation as well as by dark cytoplasm due to densely packed tonofilament bundles (Fig. 3). The basal cells with these ultrastructural characteristics were thought to be sunburn cells observed under light microscope8,9,16. Remnants of apoptotic cells or apoptotic bodies were removed later by phagocytosis by adjacent keratinocytes (Fig. 4). Interestingly, keratinocytes with prominent nucleoli were simultaneously observed in the basal and suprabasal layers at 6 HAI (Fig. 5), and this suggests the initiation of cell proliferation. In this connection, it is reported that UVB also activates a proliferative pathway to replace apoptotic cells17.

At 12 HAI, the number of keratinocytes with prominent nucleoli increased, and mild and focal intercellular edema developed mainly in the basal layer (Fig. 6). In addition, apoptotic cells were still observed, though their number decreased.

In conclusion, the early development of ultrastructural changes in the dorsal skin epidermis of rats after UVB-irradiation was clarified in the present study, and these ultrastructural findings supported the light microscopical ones previously reported by our research group.

References

4. Zamansky GB. Environmental wavelengths of ultraviolet
Fig. 5. Dorsal skin epidermis of a UVB-irradiated rat at 6 HAI. Many keratinocytes with prominent nucleolus and an apoptotic basal cell are simultaneously seen. × 3,000.

Fig. 6. Dorsal skin epidermis of a UVB-irradiated rat at 12 HAI. Mild and focal intercellular edema is seen in the basal layer. × 6,250.