Case Report

Spontaneous Pancreatic Islet Amyloidosis in a Greater White-nosed Guenon (Ceropithecus nictitans)

Hyo-Jung Kwon¹, Mi-Sun Park¹, Nam-Sik Shin¹, Doo-Youn Cho², Dae-Yong Kim¹, and Yang-Kyu Choi³

¹College of Veterinary Medicine, Seoul National University, Seoul, Korea
²School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA, USA
³Korea Research Institute of Bioscience and Biotechnology, 52, Eoeun-dong, Yuseong-gu, Daejeon, 305–333, Korea

Abstract: Pancreatic islet amyloidosis from a 15-year-old female greater white-nosed guenon is described. The monkey had been kept in an indoor exhibition facility at the Seoul Grand Park, Korea, and died 2 days after development of anorexia and lethargy. Histologically, amorphous homogeneous eosinophilic, hyalinized material was found deposited in the pancreatic islets and was positive for Congo red stain. The deposits were positive to amyloid A protein and P component by immunohistochemistry. Additionally, glucosuria and ketonuria were detected. (J Toxicol Pathol 2005; 18: 61–63)

Key words: amyloidosis, pancreas, monkey

Pancreatic islet amyloidosis has been reported in humans and in non-human primates with type 2 diabetes mellitus¹,². In non-human primates, islet amyloidosis has been reported in chimpanzees (Pan troglodytes)³, Celebes crested macaques (Macaca nigra)⁴, rhesus monkeys (Macaca mulatta)⁵, pigtailed macaques (Macaca nemestrina)⁶, and baboons (Papio species)⁷. In this report, we describe a case of spontaneous pancreatic islet amyloidosis in a greater white-nosed guenon (Ceropithecus nictitans).

Primary amyloidosis is generally associated with plasma cell dyscrasias and is the most common type of amyloidosis in humans. Secondary amyloidosis is associated with chronic inflammatory disease and is the most common form in animals³,⁹. Amyloid fibril protein makes up about 95% of amyloid and the other 5% is the P component, which is a glycoprotein. In humans as well as in non-human primates with type 2 diabetes mellitus, the major pancreatic lesion is islet amyloidosis; pancreatic amyloidosis has been found in over 90% of humans with type 2 diabetes mellitus and in 100% of spontaneously diabetic cynomolgus macaques¹,²,¹⁰.

In our case, the monkey was a 15-year-old female greater white-nosed guenon that had been kept in an indoor exhibition facility at the Seoul Grand Park, Korea. The guenon died 2 days after the initiation of clinical signs of anorexia and lethargy. Before death, urinalysis was performed using an uropaper strip (Eiken Chemical, Japan). The urinary glucose level was 4+ (> 1,000 mg/dl) and the urinary ketone level was +3 (> 40 mg/dl). The postmortem examination was performed immediately after death.

Representative tissue specimens were fixed with 10% phosphate-buffered formalin, routinely processed, and stained with hematoxylin and eosin (HE) and Congo red. Immunohistochemical identification of amyloid A protein and P component was performed in the pancreas. Sections were placed on Probe-On slides (Fisher Scientific, Pittsburgh, PA, U.S.A.), and unlabelled antibody directed against human amyloid A protein (mouse monoclonal, DAKO Corporation, Carpenteria, CA, U.S.A.) and human P component (DAKO Corporation), at dilutions of 1:50 and 1:100, respectively, were used as primary antibodies. The standard avidin-biotin complex (ABC) method was used according to the manufacturer’s protocol (Vectastain kit, Vector Laboratories, Burlingame, CA, U.S.A.) to demonstrate antigen, using 3’3’-diaminobenzidine as the chromogen. To enhance the immunoreactivity, sections in a plastic jar containing 0.01 M sodium citrate (pH 6.0) were heated in a microwave oven for 10 min.

On light microscopic examination, significant change was limited to the pancreas. Microscopically, an amorphous homogeneous eosinophilic, hyalinized material was deposited in the pancreatic islets (Fig. 1A). The degree of depositon ranged form mild, multifocal deposits without loss of cell differentiation to massive deposits completely destroying islet architecture. The deposits were Congo red positive and were positive to amyloid A protein and P component by immunohistochemistry. Additionally, glucosuria and ketonuria were detected.
of islet cells to marked diffuse deposits with severe atrophy and loss of islet cells. The eosinophilic material deposited in the islets was positive for Congo red stain (Fig. 1B) and was birefringent under polarizing light microscopy. There was minimal amount of amyloid deposit in the spleen, liver, and kidney (data not shown). The islet amyloid deposits were also strongly positive for amyloid A (Fig. 1C) and the P component (Fig. 1D). Previously, Hubbard et al. reported that immunohistochemical staining for amyloid A and P component had been very effective in identifying amyloid in pancreatic islets\(^8\). It is unlikely that the amyloid A immunostaining of amyloid deposits was a cross-reaction with the P component because the tissue localizations of the immunoreactive materials of amyloid A and P components were different from each other.

Elevated blood glucose levels may be one of the best indications of pancreatic islet amyloidosis\(^1,2,8\). Pancreatic islet amyloid deposits are seen in more than 90% of humans with type 2 diabetes mellitus\(^2,10\). The chronic stages of type 2 diabetes mellitus are associated with the replacement of islet tissue by amyloid, with up to 50% loss of the pancreatic beta cells\(^10\). Based on the pancreatic islet change and urinary analysis data, the present case was diagnosed as pancreatic amyloidosis with type 2 diabetes mellitus although no blood glucose data was available. This is the first report of islet amyloidosis with amyloid A and P components in a greater white-nosed guenon with type 2 diabetes mellitus.

Acknowledgments: This case report was supported by a grant from KRICT Research Initiative Program and Brain Korea 21 Project.

References

4. Howard CF Jr and Van Bueren A. Changes in islet cell composition during development of diabetes in *Macaca*

7. Ohagi S, Nishi M, Bell GI, Ensinck JW, and Steiner DF. Sequences of islet amyloid polypeptide precursors of an Old World monkey, the pig-tailed macaque (Macaca nemestrina), and the dog (Canis familiaris). Diabetologia. 34: 555–558. 1991.

