Reliability and validity of the running anaerobic sprint test (RAST) in soccer players

Katherine Burgess, Thomas Holt, Steven Munro, Paul Swinton

Objectives: To investigate the validity and relative and absolute reliability of the Running Anaerobic Sprint Test (RAST) in amateur soccer players.

Design: Cross-sectional experimental design with an element of repeated measures.

Methods: Twenty three males completed the RAST on two occasions and a Wingate test (WAnT) as criterion measure of anaerobic power.

Results: Criterion validity for the RAST was strong for peak power ($r=0.70$, $p<0.001$) and average power ($r=0.60$, $p=0.002$); however, the RAST significantly underestimated peak power compared to WAnT. The RAST showed very good relative reliability for average power, ICC = 0.88 and good relative reliability for peak power, ICC = 0.72. Assessment of absolute reliability highlighted that although when averaged across a group, test and re-test scores will be similar, when monitoring individuals an individual's retest score may range between 0.81 and 1.2 times the original value for peak power and between 0.9 and 1.16 for average power.

Conclusion: The RAST is a practicable field test to estimate levels of average anaerobic power. However, the results show that the RAST is not sensitive enough to detect strongly individual changes below 20% and is therefore not recommended to continually monitor an individual’s anaerobic power. Also, if true measures of peak power are required the RAST test is limited.

(Key Journal 2016;5:24-29)

Key words: field test ■ anaerobic power ■ specificity ■ football

INTRODUCTION

During most field based team sports, athletes are required to perform repeated sprint efforts. In soccer, sprinting bouts generally occur every 90 s and each of these sprints last approximately 2-4 s. During a game of soccer 1% to 11% of the distance covered is done so whilst sprinting and each outfield player performs 1000 to 1400 high intensity short duration activities. Although aerobic metabolism dominates the energy delivery during a soccer game, the most decisive actions are engendered by means of anaerobic metabolism. In addition, it has been shown that elite professional players cover greater cumulative distances by high-intensity running and sprinting than professional players of a lower standard during the course of a game. This critical reliance on a soccer player’s ability to generate anaerobic power creates interest in methods that can be used to objectively assess this ability.

The Running Anaerobic Sprint Test (RAST) was developed in 1997 by Draper and Whyte to provide a means of determining anaerobic power, which was both inexpensive and simple to implement and thus accessible to coaches for players of all levels. In addition, the test was founded on the basis of providing a more specific assessment of power for running based sports as it utilises flat sprinting rather than other modes of exercise such as cycling or staircase running. The RAST comprises performance of six 35 m sprints with 10 s rest intervals. The power produced during each sprint is calculated based on the mechanical principle that power is the product of force and velocity. Average velocity for each 35 m sprint is calculated using the sprint time and known distance (velocity = displacement/time). Acceleration is then calculated through change in velocity/time, whereby average velocity is used to represent the change in the quantity due to the observation that the initial velocity is equal to zero. Consequently, force is calculated based on Newton’s second law (force = mass × acceleration). As a result, power calculated from performance in the RAST is based on assumed uniform motion of the individual.

Since its conception in 1997, the RAST has become widely used by sports teams despite limited research evaluating the effectiveness of the test. Hodson and Jones were the first to report data concerning the reliability of the RAST when they included the test to investigate the effects of caffeine ingestion on repeated sprint ability. The authors reported reliability coefficients ranging between $r=0.92$ and $r=0.97$ for all test performance measures, although they did not specify how the reliability data were determined or the specific r value for each of the measures. Subsequently, reliability of the test has been reported by others through the use of test-retest correlations or Intraclass Correlation Coefficients (ICCs). Both statistics provide an indication of the test’s relative reliability but not its absolute reliability. In order to present a more robust account of the measurement error in a performance test it is recommended that statistics measuring both relative and absolute
reliability be provided12. In a recent study conducted by Zagatto et al.11 relative and absolute reliability of outcome measures taken from the RAST were assessed using ICCs and Bland-Altman plots, respectively. However, the authors failed to meaningfully interpret data from the Bland-Altman plots, in particular with regards to the sensitivity of the test to detect real changes that may occur due to training. Therefore, as one of the main uses of the RAST is to monitor training progress3, it is important that reliability statistics assist coaches to determine the likely measurement error in a test score and the magnitude of change that is required in order to be confident that different test scores reflect a change in physical status rather than simply random variability.

In addition to assessing reliability of the RAST researches have also investigated the validity of the test through comparison with a criterion measure. Although there is no universally agreed ‘gold standard’ for measuring anaerobic power, the Wingate test4 is widely accepted as a criterion and has been used to investigate the validity of a range of different anaerobic tests13-16. Significant correlations between the WAnT and RAST have been reported for peak power (ranging from \(r = 0.46 \) to \(r = 0.90 \)) and mean power (ranging from \(r = 0.53 \) to \(r = 0.975 \))16,11. Conversely, non-significant correlations between these measures have also been reported.17 However, the study by Keir et al.17 was conducted on a small number of participants (n=8) and did not adhere to standard protocols incorporating an unloaded acceleration phase immediately prior to the initiation of the 30 s Wingate test. Of the four previous studies which reported significant correlations, three of these did not provide full details of their methods16,10,18 leading to caution over their interpretation. The fourth study11 utilised members of the armed forces as participants. Army personnel typically undergo physical training with a focus on aerobic and muscular endurance and strength and rarely include intervals of less than 100 m in their training.19,20 Conversely, soccer players’ training (and match play) includes the performance of less than 100 m in their training.19,20 The two RAST conditions were always carried out in consecutive sessions but the first test (WAnT or RAST) was randomised. For each participant all testing sessions were carried out at the same time of day following a standardised warm up. The warm up included five minutes of pulse raising activities (jogging, high knees, heel flicks and lunges) and two practice sprints at 75 % perceived maximal efforts (35 m running sprints prior to the RAST test and 5 s cycle sprints prior to the WAnT). At the beginning of all testing sessions clothed body mass was measured using digital scales and standing height was recorded prior to the first test only. Prior to the testing sessions participants completed a familiarisation session in which they performed both RAST and WAnT tests once.

Running Anaerobic Sprint Test

To complete the RAST participants were required to perform six maximal 35 m sprints on an AstroTurf pitch with 10 s rest periods between each sprint. Players were instructed to wear their normal training footwear (this was moulded football boots in all cases). The time for each sprint was recorded using a Brower timing gate system (Brower Timing Systems, USA) with photocells positioned 35 m apart at approximately waist height. The participant started each sprint 0.3 m behind the timing gate21 (see Figure 1) and performed repeated sprints in alternate directions. The 10 s rest periods were timed using a stop watch and a tester gave the participant a 3 s count down prior to each sprint. Weather conditions during testing were dry and cold (3-6°C) with little wind.

The power produced during each sprint was determined by the following formula:

\[
\text{Power} = \frac{(\text{Body Mass} \times \text{Distance}^2)}{\text{Time}^3}
\]

Peak power was defined as the power obtained during the fastest sprint and average power (for all six sprints) was calculated by taking the mean.

![Diagramatical representation of RAST test set up](Image)
The Wingate Test
The WAnT test required participants to cycle at maximum cadence on a Monark cycle ergometer (Monark 894E ergomedic peak bike) for 30 s against a resistance equivalent to 7.5% of their body mass. Pedal revolution rate and consequently power output was measured using Monark Anaerobic test software. Participants accelerated up to maximum cadence against zero resistance before the load was applied and the test began. Power was determined over 1 s time intervals with peak power measured as the maximum value obtained and mean power calculated over the full test (30 s).

Statistical Analysis
Criterion validity was assessed with Pearson correlation coefficients to quantify the relationship between power values measured during the RAST (mean of tests 1 & 2) and WAnT, whilst paired t-tests were used to compare differences in the magnitude of power values calculated. Correlation coefficients ranging from 0.4 to 0.59 were categorised as indicating a moderate linear relationship, 0.6 to 0.79 were categorised as strong, and 0.8+ were categorised as very strong.24 Relative reliability of test and retest scores of outcome variables measured from the RAST were assessed by intra-class correlation coefficients (ICC2,1) using a 2-way random model with absolute agreement and 95% CIs. ICC values were interpreted using the following guidance: 0.41 to 0.60 as moderate reliability, 0.61 to 0.80 as good reliability and 0.81+ as very good reliability.25 Absolute reliability of the same data was quantified using the 95% limits of agreement (LOA) method originally described by Bland and Altman.26 As a result, 95% of the ratios of test scores (i.e. test/retest) should lie between the antilog of the bias multiplied and divided by the antilog of the random error component. Finally, the minimum difference (MD) statistic which can be used as a guide for the required change in the RAST test after a period of training to detect a ‘real’ change was computed. MD was calculated by multiplying the standard error of the mean (SEM) by 1.96 and $\sqrt{2}$. The SEM was calculated using the following equation: $SEM = \sqrt{1 - ICC_{2,1}}$, where SD is the standard deviation of all scores from the test.27

RESULTS
Validity
Criterion validity was strong for peak power ($r = 0.70, p < 0.001$) and average power ($r = 0.60, p = 0.002$). Paired t-tests revealed the average value for peak power was significantly greater in the WAnT compared with the RAST ($t(22) = 11.570, p < 0.001$). Conversely, the average value obtained when measuring average power was not significantly different ($t(22) = 0.565, p = 0.578$) between tests (Figure 2). Bland and Altman plots illustrating the distribution of the differences scores between tests for peak and average power are illustrated in Figure 3.

Figure 2 a) Average power and b) Peak power recorded during the RAST (mean of RAST 1&2) and WAnT. Data are mean ± SD.
Reliability

Relative reliability

The RAST showed very good relative reliability for average power, ICC = 0.88 (0.74 - 0.95: 95% CI) and good relative reliability for peak power, ICC = 0.72 (0.44 - 0.87: 95% CI) (see Table 1 for power values and Figure 4 for sprint times).

Absolute reliability

For 95% LOA analyses evidence of heteroscedasticity was obtained for peak power and average power ($r = 0.55$, $p = 0.007$; $r = 0.32$, $p = 0.137$, respectively). Log-transformation of test and retest data substantially reduced estimates of heteroscedasticity ($r = 0.12$, $p = 0.650$; $r = 0.08$, $p = 0.717$ for peak power and average power, respectively). The 95% LOA for the log-transformed data are displayed in Table 2. Minimum difference for identification of a ‘real’ change for average power was calculated as 83 W for average power and 160 W for peak power.

Table 1 Peak power and average power obtained during test 1 and test 2.

<table>
<thead>
<tr>
<th>Variable</th>
<th>RAST 1</th>
<th>RAST 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Peak Power (W)</td>
<td>766 ± 106</td>
<td>776 ± 114</td>
</tr>
<tr>
<td>Average Power (W)</td>
<td>596 ± 86</td>
<td>584 ± 87</td>
</tr>
</tbody>
</table>

Data are mean ± SD

Table 2 Outcome of limits of agreement analyses for heteroscedastic data.

<table>
<thead>
<tr>
<th>Variable</th>
<th>Bias</th>
<th>Lower, upper 95% LOA</th>
<th>Antilog of bias</th>
<th>Antilog of lower, upper 95% LOA</th>
<th>Interpretation of antilog values</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Bias</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Lower, upper 95% LOA</td>
</tr>
<tr>
<td>Peak Power</td>
<td>-0.01</td>
<td>-0.21, 0.18</td>
<td>0.99, 1.20</td>
<td>0.81, 1.20</td>
<td>Averaged across a group, test and re-test scores will be very similar</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>For an individual a retest score may range between 0.81 and 1.2 times the original value</td>
</tr>
<tr>
<td>Average Power</td>
<td>0.02</td>
<td>-0.11, 0.15</td>
<td>1.02, 1.16</td>
<td>0.90, 1.16</td>
<td>Averaged across a group, test and re-test scores will be very similar</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>For an individual a retest score may range between 0.9 and 1.16 times the original value</td>
</tr>
</tbody>
</table>

Bias = mean of differences in test and re-test scores. The antilog values are dimensionless ratios, where 1 represents equality.
The aim of this study was to investigate the criterion validity, relative reliability and absolute reliability of the RAST in amateur soccer players when conducted in an outdoor environment. The results have shown that criterion validity of the RAST was strong for peak power ($r = 0.70$, $p < 0.001$) and average power ($r = 0.60$, $p = 0.002$); however, the RAST significantly underestimated peak power in comparison to the WAnT. The RAST showed very good relative reliability for average power, ICC = 0.88 (0.74 - 0.95; 95% CI) and good relative reliability for peak power, ICC = 0.72 (0.44 - 0.87; 95% CI). Assessment of absolute reliability highlighted that although when averaged across a whole group test and re-test scores will be very similar (for both average and peak power), when used to monitor individuals an individual’s retest score for peak power may range between 0.81 and 1.2 times the original value and an individual’s retest score for average power may range between 0.9 and 1.16 times the original value.

Previously reported individual scores from the RAST have ranged from 367-1092 W for peak power and 319-927 W for average power. In addition, previous research has reported large ranges in group peak power (599-810 W) and average power (451-665 W) values. This current study’s group means for peak and mean power lie within these ranges (781 ± 121 W and 591 ± 85 W). Similarly, the values obtained here for soccer player’s peak and average power during the WAnT are comparable to values previously reported. Typical values of group means for soccer players measured during a WAnT are in the order of 740-860 W for peak power and 350-700 W for average power, with individual values for both variables varying from 400-1434 W and 218-900 W. The values obtained for the RAST test are in line with those previously reported from indoor environments. Although ‘outdoor’ testing is often considered to be less reliable due to potentially fluctuating conditions the conditions remained relatively stable throughout this studies testing period and hence resulted in relative reliability scores which fell within the range of those previously reported. This would support the idea that as long as the environment remains relatively stable outdoor testing can be just as reliable as indoor testing.

The significant correlations for both peak and mean power ($r = 0.70$, $p < 0.001$; $r = 0.60$, $p = 0.002$) reported in the present study between the RAST and WAnT correspond with correlation values reported elsewhere. Previous studies have reported significant r values of 0.46-0.90 for peak power and 0.53-0.98 for average. To the authors’ knowledge the only previous study conducted with soccer players performing the RAST in an outdoor environment is that by Keir et al. who found no significant correlations between peak and mean power in the RAST and WAnT tests which contradicts the findings reported here. However, the study by Keir et al. was conducted on only eight participants and they did not include an unloaded acceleration phase immediately prior to the initiation of the 30 s Wingate tests which is contrary to the standard protocol. The results presented here also show that whilst power produced during the RAST is related to power production during the WAnT, comparatively the RAST significantly underestimates peak power values. This finding is similar to that reported by Zagatto et al. who also found that the RAST produced significantly lower peak power scores than the WAnT. A potential explanation of this finding is that peak power in the WAnT is a more instantaneous measure of power (1 s average) which usually occurs in the first three seconds of the test following the unloaded acceleration phase. Conversely, for the RAST peak power is determined from the fastest sprint which equates to an average power for an approximately 5-6 s time period. The RAST also includes an element of acceleration with the starting start and therefore an average value will be reduced by this initial low velocity period. However, when this acceleration phase was also removed by Keir et al. during the WAnT they still found the WAnT test to produce significantly higher peak power than the RAST.

The relative reliability of the RAST reported here lie within the range previously reported for both average power (ICCs between 0.72 and 0.97) and peak power (ICCs between 0.58 and 0.92). The major novel finding of this study is the absolute reliability statistics associated with this test demonstrating the high random variability that exists and that the variation is heteroscedastic. Heteroscedasticity is a relatively common feature of test-retest scores in sport and exercise science but has implications in detecting real changes in an athlete’s fitness, particularly those with already well developed attributes and high test scores. In the current study heteroscedasticity was reduced by applying a log-transformation and once the antilogs were taken, to return values to the original scale, the 95% LOA represented ratio limits of agreement. That is, instead of the potential change in a retest score being calculated by adding and subtracting a total error value, the potential change is found by multiplying by an error value. For example, If a new athlete representative of the population studied here were to perform the RAST and obtain an average power score of 440 W, we expect with approximate 95% probability that the second score will be between the range of 396-510 W (e.g. 440 × 0.9 = 396 W and 440 × 1.16 = 510 W, with error values taken from the antilog of lower, upper 95% LOA in Table 2). The range in these possible retest values may be considered by some already to be too large and therefore unacceptable. However, for an athlete with higher power production the 95% LOA for a retest value will be even wider due to the heteroscedastic nature of the data. If, for example, the second athlete obtained an average power score of 680 W, there is an approximate 95% probability that the second score will be between the range of 612-788 W. For peak power the potential range of scores that could be expected on a retest are shown here to be even greater than average power, with changes of up to approximately 20% for peak power within the 95% probability level. It is clear that with the above criteria the RAST would be of limited use in detecting changes in the majority of pre-post training designs used by coaches. One potential strategy to mitigate this problem is to incorporate narrower LOA, and therefore, the magnitude required of any change in test score to be considered indicative of altered ability will be lower. However, with this approach the probability that a different
test score will incorrectly be considered a true change is increased. A less abstract and more readily understood practice is to calculate the minimum difference statistic which provides a single minimum value for all players which a test score must change by after a period of training to reflect a ‘real’ change. The results from the study suggest that individuals would have to increase their average power by at least 83 W and their peak power by at least 160 W in the RAST test to be confident that the difference reflected a training related increase in muscular power. These values equate to approximately 14% and 27% of the average values produced, further illustrating the low sensitivity of the RAST test to detect training related changes.

CONCLUSIONS

In conclusion the findings of this study have shown that the RAST is a relatively reliable, practicable field based test which can be used by coaches to estimate their soccer player’s level of average anaerobic power. However the test is not sensitive enough to detect individual changes below approximately 15 to 20% and is therefore not recommended to be used to continually monitor individual performance. The test can, however, be used to monitor the anaerobic power of a team as a whole. In addition if true peak power measures are required this test also has limitations.

ACKNOWLEDGEMENTS

To the authors knowledge there are no conflicts of interest concerning this manuscript.

REFERENCES