IEICE Transactions on Communications
Online ISSN : 1745-1345
Print ISSN : 0916-8516

この記事には本公開記事があります。本公開記事を参照してください。
引用する場合も本公開記事を引用してください。

Top-n Recommendation using Low-rank Matrix Completion and Spectral Clustering
Qian WANGQingmei ZHOUWei ZHAOXuangou WUXun SHAO
著者情報
ジャーナル 認証あり 早期公開

論文ID: 2019EBP3230

この記事には本公開記事があります。
詳細
抄録

In the age of big data, recommendation systems provide users with fast access to interesting information, resulting to a significant commercial value. However, the extreme sparseness of user assessment data is one of the key factors that lead to the poor performance of recommendation algorithms. To address this problem, we propose a spectral clustering recommendation scheme with low-rank matrix completion and spectral clustering. Our scheme exploits spectral clustering to achieve the division of a similar user group. Meanwhile, the low-rank matrix completion is used to effectively predict un-rated items in the sub-matrix of the spectral clustering. With the real dataset experiment, the results show that our proposed scheme can effectively improve the prediction accuracy of un-rated items.

著者関連情報
© 2020 The Institute of Electronics, Information and Communication Engineers
feedback
Top