IEICE Transactions on Communications
Online ISSN : 1745-1345
Print ISSN : 0916-8516

This article has now been updated. Please use the final version.

Study on Cloud-based GNSS Positioning Architecture with Satellite Selection Algorithm and Report of Field Experiments
Seiji YOSHIDA
Author information
JOURNAL RESTRICTED ACCESS Advance online publication

Article ID: 2021WWP0006

Details
Abstract

Cloud-based Global Navigation Satellite Systems (CB-GNSS) positioning architecture that offloads part of GNSS positioning computation to cloud/edge infrastructure has been studied as an architecture that adds valued functions via the network. The merits of CB-GNSS positioning are that it can take advantage of the abundant computing resources on the cloud/edge to add unique functions to the positioning calculation and reduce the cost of GNSS receiver terminals. An issue in GNSS positioning is the degradation in positioning accuracy in unideal reception environments where open space is limited and some satellite signals are blocked. To resolve this issue, we propose a satellite selection algorithm that effectively removes the multipath components of blocked satellite signals, which are the main cause of drop in positioning accuracy. We build a Proof of Concept (PoC) test environment of CB-GNSS positioning architecture implementing the proposed satellite selection algorithm and conduct experiments to verify its positioning performance in unideal static and dynamic conditions. For static long-term positioning in a multipath signal reception environment, we found that CB-GNSS positioning with the proposed algorithm enables a low-end GNSS receiver terminal to match the positioning performance comparable to high-end GNSS receiver terminals in terms of the FIX rate. In an autonomous tractor driving experiment on a farm road crossing a windbreak, we succeeded in controlling the tractor's autonomous movement by maintaining highly precise positioning even in the windbreak. These results indicates that the proposed satellite selection algorithm achieves high positioning performance even in poor satellite signal reception environments.

Content from these authors
© 2021 The Institute of Electronics, Information and Communication Engineers
feedback
Top