SUMMARY We present a forward-secure public-key encryption (PKE) scheme without key update, i.e., both public and private keys are immutable. In contrast, prior forward-secure PKE schemes achieve forward security by constantly updating the secret keys. Our scheme is based on witness encryption by Garg et al. (STOC 2013) and a proof-of-stake blockchain with the distinguishable forking property introduced by Goyal et al. (TCC 2017), and ensures a ciphertext cannot be decrypted more than once, thereby rendering a compromised secret key useless with respect to decryption of past ciphertexts the legitimate user has already decrypted.

In this work, we formalize the notion of blockchain-based forward-secure PKE, show the feasibility of constructing a forward-secure PKE scheme without key update, and discuss interesting properties of our scheme such as post-compromise security.

key words: Public-Key Encryption, Forward Security, Blockchain

1. Introduction

Forward security for public-key encryption is a security notion that ensures that a secret key compromise does not affect the confidentiality of past ciphertexts. More specifically, even if Alice’s long-term secret key sk_A is compromised by an eavesdropper Eve, who observed and recorded ciphertexts sent to Alice in the past, forward security guarantees that Eve does not learn the secrets required for decrypting these past ciphertexts (i.e., sk_A is insufficient to decrypt).

While forward security in an interactive setting (e.g., key exchange protocols), can be achieved relatively easily by generating ephemeral secrets that are erased when no longer needed, this is harder in a non-interactive setting. However, one strategy for achieving forward security in a non-interactive setting, is to constantly update or erasing long term secrets. For example, a naïve approach to obtaining forward-secure PKE is generating a series of one-time public/secret key pairs; once a key pair has been used, erase the secret key as soon as possible to ensure that an adversary cannot learn this key in a potential future compromise. The disadvantage of this approach is that a sender needs to update Alice’s public key if all of the key pairs have been used, and furthermore needs to be aware of which keys Alice has already used and erased. This makes the naïve approach impractical, but more practical approaches to forward security have been developed, which we will briefly outline below.

Canetti et al. [8] formally introduced forward-secure PKE by extending the definition of PKE with a key update algorithm. In their scheme, the encryption algorithm takes as input a time period along with the receiver’s public key and a message. The ciphertext is associated with the specified time period. The key update algorithm takes as input a secret key sk and outputs an updated secret key sk' (the public key pk remains the same). Even if an adversary compromises sk', they cannot decrypt ciphertexts in the prior periods (and thus provides forward security).

Green et al. [16] presented a fine-grained forward-secure (aka. absolute forward security [6]) encryption scheme called puncturable encryption. It introduces a key update algorithm similar to [8], but allows revoking a specific ciphertext, that is, the key update algorithm outputs an updated secret key which can be used to decrypt ciphertexts except the ciphertext given to the algorithm.

While interactive by definition, the recent work [2,11,18] on ensuring forward security of 0-RTT key exchange involves techniques that can be used to implement forward security for non-interactive primitives such as PKE. The idea behind 0-RTT key exchange, introduced in protocols such as TLS 1.3 [23], is to enable clients to send encrypted data in their first message using pre-shared secrets. This essentially corresponds to a non-interactive encryption for the server, and to provide forward security of this data, is almost equivalent to constructing a forward-secure PKE (e.g., see the bloom filter encryption in [11]).

To the best of our knowledge, forward security in a non-interactive setting such as PKE, has only been achieved by introducing key update [2,8,11,16,18,22]. This seems natural, since in an ordinary PKE, if an eavesdropper Eve compromises the secret key sk, she can decrypt any ciphertext c by simply running the decryption algorithm Dec to obtain $m ← \text{Dec}(sk, c)$. Hence, in order to achieve forward security, it is natural to prevent Eve from compromising an unmodified secret key. In the key update approach, we update or partially break the secret key $sk[i]$ to derive a new secret key $sk[i+1]$ which cannot be used for decrypting past (or already decrypted) ciphertexts, and then erase the old key $sk[i]$.

Copyright © 200x The Institute of Electronics, Information and Communication Engineers
1.1 Our Contribution

In this paper, we give a feasibility result of a forward-secure encryption scheme without key update, i.e. both the public key and the secret key remain unchanged like ordinary (non-forward-secure) PKE. To achieve this, we allow the PKE scheme to make use of a blockchain for encryption and decryption of messages.

Firstly, we note that the standard definitions of correctness and (forward) security are insufficient for capturing a setting in which the PKE scheme depends on a blockchain. This is due to the ability of an adversary to observe any information posted to the blockchain when encrypting or decrypting messages, and the ability to post maliciously crafted blocks to the blockchain, which might prevent an honest user from correctly decrypting a ciphertext. Hence, we appropriately extend these definitions. Our forward security notions are obtained by extending the standard IND-CPA security notion for ordinary PKE (see Appendix B) with two additional oracles. The first oracle, Leak, captures secret key leakage that happens after the honest user decrypts the challenge ciphertext. The second oracle, HonestDec, captures the information leakage an adversary can observe on the blockchain when an honest user decrypts a ciphertext. For the full details of our security definition, see Section 4.

Our construction of a forward-secure PKE without key update, assumes the existence of a proof-of-stake blockchain which satisfies properties described in [14]. We combine this with witness encryption, which in general allows a plaintext to be encrypted under an NP statement instead of a public encryption key, and anyone in possession of a witness for the statement, will be able to decrypt. In our construction, we use witness encryption to tie a ciphertext to information posted by the decryptor to the blockchain, and thereby turn the blockchain into an immutable decryption log that only allows a ciphertext to be decrypted once. In other words, like puncturable encryption [16], our construction implements fine-grained forward security which removes the ability to decrypt on a ciphertext-by-ciphertext basis, as opposed to the (standard) more coarse approach of revoking the ability to decrypt any ciphertext constructed in the time period between key updates (we discuss security further in Section 4). Note that while encryptor and decryptor are required to interact with the blockchain protocol to obtain an updated view of the blockchain, the communication between the two remains non-interactive: once the encryptor has created a ciphertext based on his current view of the blockchain, no further communication is required on his part and he can go offline without affecting the decryptor’s ability to decrypt.

Specifically, the pair of public key and secret key in our construction is simply that of a digital signature scheme. The encryption algorithm uses witness encryption to encrypt a message for an NP statement capturing that a certain type of message signed by the receiver has been posted to the blockchain. The decryption algorithm generates an ephemeral secret esk, posts a signed message associated with esk to the blockchain, which will allow the decryption of the ciphertext using the relevant sequence of blocks on the blockchain and esk as a witness (decryption key). Immediately after decryptions, the decryption algorithm erases esk which ensures that an adversary compromising the secret key, will not be able to decrypt as they do not know esk.

Since our construction uses a simple key pair of a digital signature scheme and these are immutable, the size of the keys is obviously independent of the number of time periods or decryptions unlike existing forward-secure PKE schemes [8, 16]. Fixed immutable keys are furthermore an interesting property from an application point of view. For example, it is undesirable to use a fine-grained forward-secure PKE scheme with key updates in a scenario where the decryption key is used by multiple devices, such as laptops and smartphones, as keys would have to be synchronized to maintain fine-grained forward security. This concern is alleviated by fixed immutable secret keys. Lastly, we note that our construction enjoys some interesting security properties in addition to forward security, such as secret key leakage detection and a variant of post-compromise security [9]. We will discuss these benefits in detail in Section 5 and Section 6.

1.2 Updates from INDOCRYPT version

Compared to the INDOCRYPT2021 version [21], we added a more concrete discussion on post-compromise security (Section 5), a supplementary explanation for the extractability of witness encryption (Appendix A), an explanation of why the correctness does not hold if the unique (instead of first) blockchain record is used as a witness (Section 3.4), and another mitigation against a message suppression attack from key compromise detection (Section 6.4).

2. Preliminaries

In this section, we introduce building blocks and their security definitions. Besides the primitives defined below, we make use of an EUF-CMA secure signature scheme $\text{Sig} = (\text{Sig.KGen, Sig.Sign, Sig.Ver})$, and a one-way hash function $H : \{0, 1\}^n \rightarrow \{0, 1\}^m$.

2.1 Witness Encryption

Witness Encryption is a type of encryption introduced by Garg et al. [12]. Instead of a pair of public and private keys, in witness encryption, a plaintext is encrypted with respect to an NP statement x and the ciphertext can be decrypted with the corresponding witness w.

Definition 1 (Witness Encryption [12]). A witness encryption scheme WE for NP language L (with witness relation R) is a tuple of algorithms $(\text{WE.Enc}, \text{WE.Dec})$.

- $c \leftarrow \text{WE.Enc}(1^\lambda, x, m)$: The encryption algorithm WE.Enc takes as input a string x, and a message m, and outputs a ciphertext c.
- $m/\perp \leftarrow \text{WE.Dec}(c, w)$: The decryption algorithm
WE.Dec takes as input a ciphertext \(c \), and a string \(w \), and outputs a message \(m \) or the symbol \(\bot \).

A witness encryption scheme \(\text{WE} \) is required to satisfy correctness: for all security parameters \(\lambda \), all strings \(x \) and \(w \) for which \(R(x, w) \) holds, for all \(m \), it holds that \(\text{WE}.\text{Dec}(\text{WE}.\text{Enc}(1^\lambda, x, m), w) = m \).

For a witness encryption scheme, we will use the security notion extractability, first proposed in [13], which informally requires that, for all adversaries able to distinguish between encryptions of different messages for a statement \(x \), there exists an extractor that can extract a witness \(w \) from the adversary, such that \(R(x, w) \) holds. We use the adaptive definition by Bellare et al. [5] in which \(\mathcal{A} \) is allowed to specify \(x \).

Definition 2 (Extractability). A witness encryption scheme with witness relation \(R \) is extractable if for every security parameter \(\lambda \), every PPT adversary \(\mathcal{A} = (\mathcal{A}_1, \mathcal{A}_2) \) with a random tape \(r \), there exists a corresponding PPT algorithm \(\mathcal{E} \) (the extractor) such that:

\[
\Pr \left[\begin{array}{l}
\begin{array}{l}
b' = b \\
\land \neg R(x, w)
\end{array}
\end{array} \right] \leq \frac{1}{2} \quad \text{neg}(\lambda)
\]

\[
\frac{b}{\mathcal{A}_1(1^\lambda; r) \leftarrow b \leftarrow \{0,1\}; \mathcal{A}_2(st, c) \leftarrow \text{WE}.\text{Enc}(1^\lambda, x, m_b); \mathcal{E}(1^\lambda, r)}
\]

The above definition ensures that if an adversary \(\mathcal{A} \) with non-negligible advantage \(\varepsilon(\lambda) \) in distinguishing the ciphertexts of two messages exists, an extractor \(\mathcal{E} \) with success probability \(\varepsilon(\lambda) - \text{neg}(\lambda) \) must also exist.

2.1.1 Instantiating Witness Encryption

Witness encryption is a strong cryptographic primitive and efficiently instantiating this remains a work in progress. Recent interesting results include constructions by Bartušek et al. [4] based on the generic group model, and Bartušek et al. [4] based on affine determinant programs, with the latter claimed to be the first construction sufficiently efficient to be implementable. However, these works do not consider extractability, and it is unclear whether efficient extractors can be obtained for these constructions.

Goldwasser et al. [13] proposed a candidate extractable witness encryption scheme but without a formal security reduction. Liu et al. [20] proposed a construction based on multi-linear maps, which can be instantiated from indistinguishability obfuscation (iO) [1], in which turn can be obtained from well-founded assumptions [19], leading to a theoretical instantiation. A different approach was taken by Goyal et al. [15] who show how the functionality of extractable witness encryption can be implemented efficiently on a blockchain. This approach is especially appealing in relation to our work due to the obtained efficiency and that our construction already makes use of a blockchain. Note that [15] requires the miners maintaining the blockchain to implement additional functionality i.e. smaller changes would have to be made to existing blockchain protocols to achieve the desired functionality, and to maintain forward security, the communication between miners and the decryptor must be forward secure (e.g. by using TLS 1.3 [23]). Furthermore, due to the dependency on a blockchain, [15] does not follow the standard definition of witness encryption. However, in this work, we will make use of the standard definitions above.

2.2 Blockchain Protocol

In general, a blockchain protocol is a multi-party distributed protocol that maintains an ordered sequence of blocks (blockchain) without a trusted third party. The blockchain is continuously extended by parties called miners under a consensus algorithm and forging sufficiently old blocks is considered difficult based on underlying hardness assumptions. A Proof-of-Stake blockchain uses a consensus algorithm in which a party with more stake (e.g. number of coins) is more likely to succeed in mining a new block. Below, we recall the abstract definition of blockchain protocols used in [14].

Definition 3 (Blockchain Protocol). A blockchain protocol \(\text{BLC}_V \) with validity predicate \(V \) is a tuple of algorithms (\(\text{BLC}_V.\text{UpdateState}, \text{BLC}_V.\text{GetRecords}, \text{BLC}_V.\text{Broadcast} \)).

- \(\text{BLC}_V.\text{UpdateState}(1^\lambda) \): It is a stateful algorithm that takes as input the security parameter \(\lambda \) and maintains the local state \(st \). It has no output.
- \(\text{B} \leftarrow \text{BLC}_V.\text{GetRecords}(1^\lambda, st) \): It takes as input the security parameter \(\lambda \) and a local state \(st \), and outputs the longest ordered sequence of blocks \(B \) (the blockchain) contained in \(st \).
- \(\text{BLC}_V.\text{Broadcast}(1^\lambda, m) \): It takes as input the security parameter \(\lambda \) and a message \(m \), and spreads the message \(m \) over the blockchain network. It outputs nothing.

In the above, \(V \) is a predicate which takes a sequence of blocks \(B \) and outputs 1 if \(B \) is valid. The definition of “validity” varies with the blockchain protocol; details of how \(V \) is defined will not be important for our purpose.

2.2.1 Blockchain Execution

At a high level, the execution of the blockchain protocol corresponds to the participants running UpdateState, which will continuously update their state according to messages broadcast using Broadcast e.g. a miner might broadcast a new successfully mined block. Each participant can access his current view of the blockchain via GetRecords. We assume that (honest) miners will include any record broadcast via Broadcast in the blocks they attempt to mine, which allows all participating parties to have records added to the
blockchain (e.g. in cryptocurrencies, a user might wish to add a transaction).

In [14], the execution of a blockchain protocol is formally modeled in the UC-framework [7], and is directed by the environment \(Z \), which initially activates all participants as either honest or corrupt (as in [14], we only consider static corruptions). All corrupt parties are controlled by an adversary \(A \). The execution starts by all honest users running UpdateState on an empty state, and proceeds in rounds. In each round, an honest user might receive a record from \({\sf UpdateState} \) on an empty state, and proceeds in rounds. In these definitions, we make use of the protocol agrees upon all except the last \(r \) blocks removed, and \(B \leq B \) to denote that \(B \) is a prefix of \(B \). Lastly, we will identify rounds of the blockchain protocol with increasing positive integers in the natural way i.e. for rounds \(r \) and \(\tilde{r} \), \(r \leq \tilde{r} \) means that round \(r \) is prior to or the same round as \(\tilde{r} \).

The blockchain properties are defined based on the following predicates: blockchain consistency (consistent), which captures that all honest participants in the blockchain protocol agrees upon all except the last \(\ell \) blocks; sufficient stake contribution (suf-stake), which captures that all blockchains of length \(\ell \) has a unique stake fraction of at least \(\beta \); and bounded stake forking (bd-stake-fork), which captures that all maliciously constructed forks of the blockchain have unique stake fraction less than \(\alpha \). Formally, these predicates are defined as:

- \(\text{consistent}^\ell(\text{view}) = 1 \) iff for all rounds \(r \leq \tilde{r} \) and honest parties \(i, j \) in view with blockchain \(B \) in round \(r \) and \(B \) in round \(\tilde{r} \), respectively, it holds that \(B^\ell \preceq B \).
- \(\text{suf-stake}^\ell(\text{view}, \beta) = 1 \) iff for every round \(r \geq r' \) where \(r' \)-th blockchain \(B \) satisfies \(|B'| \geq \ell \), and each honest party \(i \) with blockchain \(B \) at round \(r \), it holds that \(u\text{-stakefrac}(B, \ell) \geq \beta \).
- \(\text{bd-stake-fork}^{(\ell, \ell_2)}(\text{view}, \alpha) = 1 \) iff for all rounds \(r \geq \tilde{r} \), each honest party \(i \) with blockchain \(B \) at round \(r \), each corrupt party \(j \) with blockchain \(B \) at round \(\tilde{r} \), if there exists \(l' \geq l_1 + l_2 \) such that \(B^{l'} \preceq B \) and for all \(\ell < l' \), \(B^{l'} \not\preceq B \), then \(u\text{-stakefrac}(B, \ell - l_1) \leq \alpha \).

Based on the consistency and sufficient stake contribution predicates, we define the corresponding blockchain properties.

Definition 4 (Chain Consistency). A blockchain protocol \(\text{BLC}_V \) satisfies \(\ell_0 \)-consistency for adversary \(A \) in environment \(Z \), if for every \(\ell > \ell_0 \):

\[
\Pr \left[\text{consistent}^\ell(\text{view}) \mid \text{view} \leftarrow \text{EXEC}^{\text{BLC}_V}[A, Z, 1^\Lambda] \right] \geq 1 - \neg\alpha(\lambda).
\]

Definition 5 (Sufficient Stake Contribution). A blockchain protocol \(\text{BLC}_V \) satisfies \(\ell_0, \beta \)-sufficient stake contribution for adversary \(A \) in environment \(Z \), if for every \(\ell > \ell_0 \):

\[
\Pr \left[\text{suf-stake}^\ell(\text{view}, \beta) \mid \text{view} \leftarrow \text{EXEC}^{\text{BLC}_V}[A, Z, 1^\Lambda] \right] \geq 1 - \neg\beta(\lambda).
\]

Lastly, we consider a property called distinguishable forking which requires that sufficient stake contribution and bounded stake forking properties hold simultaneously. Note that when this is the case (and \(\alpha < \beta \)), it is possible to distinguish an honestly created extension of the blockchain from an adversarially created fork by examining the unique stake fraction shown in the extension or fork.

Definition 6 (Distinguishable Forking). A blockchain protocol \(\text{BLC}_V \) satisfies \(\ell_0, \beta, \ell_1, \ell_2 \)-distinguishable forking for adversary \(A \) in environment \(Z \), if for every \(\ell > \ell_1 \) and \(\ell > \ell_2 \):

\[
\Pr \left[\begin{array}{c}
\alpha + \neg\alpha(\lambda) < \beta \\
\text{suf-stake}^\ell(\text{view}, \beta) = 1 \\
\text{bd-stake-fork}^{(\ell, \ell_2)}(\text{view}, \alpha + \neg\alpha(\lambda)) = 1 \\
\text{view} \leftarrow \text{EXEC}^{\text{BLC}_V}[A, Z, 1^\Lambda] \\
\end{array} \right] \geq 1 - \neg\beta(\lambda).
\]

Goyal et al. showed in [14] that Snowwhite, a Proof-of-Work based blockchain protocol proposed by Daian et al. [10], satisfies all of the above properties.

2.2.3 Proof-of-Work Blockchain

The above properties, which will be used as a basis for the security of our construction, are all stated with respect to a blockchain based on Proof-of-Work. It might be considered whether it would be possible to instead rely on a blockchain based on Proof-of-Work in which the blockchain is extended by miners solving computational puzzles (i.e. relying on the computational power of the miners). This, however, seems
difficult. More specifically, in the typical Proof-of-Work setting, an adversary can locally compute a valid fork in realistic time by solving the required puzzles and ignoring input from honest miners. This would break the distinguishable forking property which our construction crucially depends on. In contrast, this property can be achieved in a Proof-of-Stake blockchain because we assume, as in [14], that the adversary controls only a minority stake and cannot forge digital signatures of other miners controlling a majority stake.

2.2.4 Additional Blockchain Notation

Each block of a blockchain B contains a list of records. A record is a set of fields and a field is an arbitrary string. We denote the i-th block of B as $B_{[i]}$, the number of records in the i-th block as $|B_{[i]}|$, the j-th record in the i-th block as $B_{[i][j]}$, and each field in a record r as r. We use the notation $r \in B$ if there exists i, j such that $B_{[i][j]} = r$, and $r \notin B$ when this is not the case.

Also, we overload the consistency predicate, and define consistent $^{\ell}$ (B_{prefix}, B) to hold for two sequences of blocks, B_{prefix} and B, if and only if B_{prefix}^{ℓ} with the last ℓ blocks truncated is a prefix of B. Finally, for a blockchain satisfying $(\alpha, \beta, \ell_1, \ell_2)$-distinguishable forking, we introduce a predicate $\text{ext-suf-stk}^{(\ell_1, \ell_2)}(B, i)$ (short for “extended with sufficient stake”), which takes a sequence of blocks B and index i where $i \geq 0$, and holds if and only if the number of blocks after the i-th block is larger than $\ell_1 + \ell_2$ and at least β fraction of state is proved 1 in the last ℓ_2 blocks. Intuitively, ext-suf-stk determines whether the i-th block looks honestly created, assuming stakes of adversaries are bounded by α (where $\alpha < \beta$).

3. Forward-Secure PKE without Key Update

In this section, we give definitions and the construction of our forward-secure PKE scheme without key update. In contrast to existing forward-secure PKE schemes [8, 16], both pk and sk are immutable, and since we do not employ key update to achieve forward security, the syntax looks much closer to the traditional non-forward-secure PKE schemes except we allow the encryption and decryption algorithm to make use of a blockchain protocol.

Specifically, we assume that both encryptor and decryptor are participants in a blockchain protocol, and will allow the encryption and decryption algorithms direct access to the state of the encryptor and decryptor, respectively. Note that this does not necessarily require that the encryptor or decryptor have any stake in the blockchain, but that they have the ability to broadcast messages across the blockchain network, and can extract, from their local state, their current view of the blockchain. It is assumed that both encryptor and decryptor will maintain their state by running UpdateState of the blockchain protocol, and that the encryption and decryption algorithms will have access to the most recent state when extracting the current view of the blockchain via GetRecords. In other words, we treat the input state st to the encryption and decryption algorithms as a reference to the most current state (as opposed to the value of the state at the time the algorithms are called), which will allow, for example, the algorithms to broadcast a message, and wait for this message to be included in the blockchain, before continuing execution.

The syntax of our forward-secure PKE scheme is as follows:

Definition 7 (FSPKE). A forward-secure public-key encryption scheme without key update under the existence of a blockchain protocol BL_Y is a tuple of algorithms $(\text{FSPKE.KGen, FSPKE.Enc, FSPKE.Dec})$.

- $(pk, sk) \leftarrow \text{FSPKE.KGen}(1^\lambda)$: The key generation algorithm FSPKE.KGen takes as input the security parameter λ. It outputs a key pair (pk, sk).
- $c \leftarrow \text{FSPKE.Enc}(st, pk, m)$: The encryption algorithm FSPKE.Enc takes as input a reference to a blockchain state st, a public key pk and a message m. It outputs a ciphertext c.
- $m / \bot \leftarrow \text{FSPKE.Dec}(st, sk, c)$: The decryption algorithm FSPKE.Dec takes as input a reference to a blockchain state st, a secret key sk and a ciphertext c. It outputs a message m or the symbol \bot.

3.1 Correctness

Unlike ordinary (forward-secure) PKE, the correctness of a PKE scheme dependent on a blockchain is non-trivial. Specifically, when decryption is dependent on information obtained from or posted to the blockchain, we need to consider potential adversarial interference from other entities with access to the blockchain. Firstly, malicious miners can potentially prevent correct decryption by simply not including any information required for decryption in the blockchain. Secondly, since the basic premise of the use of the blockchain is that anyone can post a block, and by doing so, any malicious user might be able to interfere with the decryption by honest users. We capture this aspect of the use of a blockchain, by considering a correctness definition similar to a security game, in which the adversary attempts to prevent decryption of an honestly constructed ciphertext. Note that besides controlling corrupt parties, the adversary in our definition can make honestly mined blocks contain maliciously generated messages by simply broadcasting these, since we assume that all honest miners will include messages received via the broadcast functionality of the blockchain.

We define correctness via the security game shown in Figure 1 in which the adversary can instruct two honest users to encrypt and decrypt any time during the execution of the blockchain protocol via the Enc and Dec oracles. Note that for the correctness definition to be meaningful, we will only consider adversaries that query these oracles once in that order. We refer to such adversaries as correctness-admissible.

1How to prove state vary in PoS blockchain protocols. For example, presenting a digital signature is one typical method.
Furthermore, note that additional restrictions on the adversary and the execution of the blockchain are likely to be required for correctness to hold for any scheme that makes meaningful use of the blockchain. In particular, the delay an adversary might introduce for messages sent to honest parties might have to be limited, and the execution of the blockchain protocol might be required to extend the blockchain. However, we will not include such restrictions or guarantees in the definition below, but introduce appropriate assumptions when showing correctness of our concrete scheme.

Definition 8 (Correctness). Let BLC_V be a blockchain with the validity predicate V, and let $\text{FSPKE} = (\text{FSPKE.KGen}, \text{FSPKE.Enc}, \text{FSPKE.Dec})$ be a public-key encryption scheme with access to BLC_V. We say that FSPKE satisfies correctness for adversary \mathcal{A} in environment Z and for security parameter λ, if for every plaintext m, every pair of honest users i and j in Z, there exists a negligible function $\varepsilon(\cdot)$ such that the following holds:

$$\Pr \left[G_{\text{A},Z,\text{FSPKE},m,i,j}(\lambda) = 1 \right] \geq 1 - \varepsilon(\lambda)$$

where the security game $G_{\text{A},Z,\text{FSPKE},m,i,j}(\lambda)$ is defined in Figure 1.

3.2 Security

We will now define a security notion capturing forward security for a PKE scheme FSPKE based on a blockchain. Like in the case of correctness, the definition is non-standard due to the ability of an adversary to observe and manipulate the blockchain. Our security notion, which we denote fs-IND-CPA security, is based on the standard IND-CPA security notion for ordinary PKE (see Appendix B), in which the adversary is challenged to distinguish between the encryption c^* of two adversarially chosen messages, m_0 and m_1. However, we allow the adversary to access two new oracles: Leak and HonestDec. The first oracle, Leak, captures the notion of a key compromise. When it is invoked, it will return the secret key to the adversary, but before doing so, it ensures that the challenge ciphertext has been decrypted by running $m^* \leftarrow \text{FSPKE.Dec}(\text{st}, sk, c^*)$. In previous forward security notions, this oracle would correspond to an oracle that updates the secret key and returns the new (updated) key to the adversary.

The second oracle, HonestDec(c), captures potential information leakage from records posted on the blockchain by honest users in the decryption process. Specifically, in the blockchain setting, an honest user might be required to post information related to a ciphertext c or their secret key sk, in order to be able to decrypt c. Since the blockchain is public, an adversary will be able to obtain this information just by monitoring the blockchain. To capture this, the oracle HonestDec allows the adversary to submit any ciphertext c, which the oracle will decrypt as $m \leftarrow \text{FSPKE.Dec}(\text{st}, sk, c)$. However, as we consider a CPA security notion, the decryption result m will not be returned to the adversary (he will only be able to observe any information posted to the blockchain in the decryption process). Our definition can be extended to a CCA notion, simply by returning m and restricting the adversary from submitting c^*. Note that in our definition below, no restrictions are placed on c submitted to HonestDec.

Finally, note that the fs-IND-CPA definition itself is generic: it does not place any assumptions on the adversary in terms of adversarial control of the blockchain (e.g. the amount of stake held by the adversary). For our concrete scheme, which will be presented in Section 3.3, we will show that fs-IND-CPA security holds, assuming the stake controlled by the adversary is sufficiently small as in [14].

Security is defined via the game shown in Figure 2. We say that an adversary $\text{fs-IND-CPA} \mathcal{A}$ is admissible if \mathcal{A} queries the challenge oracle Chal once with messages m_0 and m_1 of equal length, and only queries the Leak oracle after Chal has been queried (without loss of generality, we can assume any \mathcal{A} always queries both oracles).

Definition 9 (fs-IND-CPA). Let BLC_V be a blockchain protocol with the validity predicate V, and let $\text{FSPKE} = (\text{FSPKE.KGen}, \text{FSPKE.Enc}, \text{FSPKE.Dec})$ be a public-key encryption scheme with access to BLC_V. We define the advantage $\text{Adv}_{\mathcal{A},\text{FSPKE}}^{\text{fs-IND-CPA}}(\lambda)$ of an adversary \mathcal{A} against the fs-IND-CPA security of FSPKE as

$$\text{Adv}_{\mathcal{A},\text{FSPKE}}^{\text{fs-IND-CPA}}(\lambda) := \Pr \left[\mathcal{G}_{\text{A},Z,\text{FSPKE},i,j}^{\text{fs-IND-CPA}}(\lambda) = 1 \right] - \frac{1}{2}$$

where the security game $\mathcal{G}_{\text{A},Z,\text{FSPKE},i,j}^{\text{fs-IND-CPA}}(\lambda)$ is defined in Figure 2. We say that FSPKE is fs-IND-CPA secure against an admissible adversary \mathcal{A} in environment Z if for all honest users i and j in Z, $\text{Adv}_{\mathcal{A},\text{FSPKE}}^{\text{fs-IND-CPA}}(\lambda)$ is negligible in λ.

Note that similar to puncturable encryption [16], the above security notion guarantees fine-grained forward security i.e. the scheme must support removing the ability to decrypt just a single ciphertext. This improves upon the notion for standard forward-secure schemes based on key update, in which the ability to decrypt all ciphertexts constructed between two key updates is lost in the second key update. Note that adjusting the time period between key updates in this type of scheme is a challenging task; frequent updates implies that the ability to decrypt any ciphertext the decryptor cannot immediately access and decrypt will be lost, whereas infrequent updates implies that any adversary gaining access to the decryption key will have the ability to decrypt a potentially large number of previous ciphertexts i.e. any ciphertext constructed within the current time period (as well as future ciphertexts). In contrast, fine-grained forward security does not require a notion of time, and any ciphertext not yet decrypted by the decryptor will remain decryptable. In
is able to decrypt the message. Corresponding record as a witness, the decryption algorithm until the blockchain has been sufficiently extended. Then, signs such a record, posts this to the blockchain, and waits algorithm, which has access to the signing key, constructs and key is the receiver’s long-term secret. The decryption algorithm, of record associated to an ephemeral secret to be signed by the receiver and posted to the blockchain. Here, the signing construction, a message is encrypted under an NP statement requiring that a certain type of record associated to an ephemeral secret to be signed by the receiver and posted to the blockchain. Here, the signing key is the receiver’s long-term secret. The decryption algorithm, which has access to the signing key, constructs and signs such a record, posts this to the blockchain, and waits until the blockchain has been sufficiently extended. Then, using the ephemeral secret and the blockchain containing the corresponding record as a witness, the decryption algorithm is able to decrypt the message.

Noted that the ephemeral secret is the only secret required to construct a valid witness required for decryption as the blockchain is assumed to be public. Hence, neither the record posted to the blockchain nor a key compromise must leak this. The former is ensured by using a one-way hash function (and high-entropy ephemeral secrets), and the latter is ensured by deleting the ephemeral secret once decryption has been completed. Note also, that an attacker without access to the long-term signing key will be unable to construct an appropriate record that can be used for decryption, assuming the signature scheme is secure.

The key to making this construction forward secure is to require the NP relation to check that the record used in the witness is the first record in the blockchain that allows decryption. This will prevent an attacker from creating a valid witness for a given ciphertext once this has been decrypted by the receiver, even if the attacker gains access to the long-term signing key.

The above assumes that the attacker cannot manipulate the blockchain itself. To ensure the security extends to attackers with a minority stake in the blockchain, we rely on the distinguishable forking property (Definition 6). More specifically, the distinguishable forking property guarantees that honestly created blockchain extensions can be distinguished from adversarially constructed forks by examining the unique stake in blockchain. Hence, by letting the NP relation additionally check that blockchain used in the witness is of sufficient length and has sufficient stake, we can ensure that the attacker cannot decrypt by constructing a fork of the blockchain.

Let WE be a witness encryption scheme for the NP relation R_{FSPKE} (defined in Figure 4), BLC_V a blockchain protocol with the validity predicate V, Sig a public key signature scheme, and H a one-way hash function. We present our construction, FSPKE, of a forward-secure public-key encryption scheme without key update in Figure 3. Note that the scheme.
depends on a set of parameters \(\text{par} = (\beta, \ell_c, \ell_1, \ell_2) \) which should be set according to the properties of the underlying blockchain protocol.

3.3.1 Relation \(R_{\text{FSPKE}} \)

The relation \(R_{\text{FSPKE}} \) used in WE and defined in Figure 4 makes use of several sub-relations. We discuss the intuition of these in the following. \(R_{\text{ValidBlocks}} \) ensures that both sequences of blocks satisfy blockchain-protocol-specific requirements i.e. it denies malformed inputs. \(R_{\text{ValidEsk}} \) ensures that the ciphertext has not yet been decrypted. It requires that the given esk is valid for the first record on the blockchain which satisfies \(R_{\text{DecAttempt}} \). ext-suf-stk used in \(R_{\text{ValidEsk}} \) ensures the ith block is honestly created with all but negligible probability. \(R_{\text{DecAttempt}} \) is true if the given record \(r \) contains a decryption attempt for the ciphertext associated with id. \(R_{\text{NotYetDecrypted}} \) ensures that before the jth record in the ith block in \(B \), there are no valid decryption attempts for the ciphertext associated with id. This relation guarantees that the ciphertext can be decrypted only once. \(R_{\text{KnownEsk}} \) ensures that the party who is trying to decrypt knows the ephemeral secret key esk for the first decryption attempt.

3.4 Using the First vs a Unique Record

In \(R_{\text{ValidEsk}} \) (Figure 4), using the unique (instead of first) valid record affects the correctness.

Consider the case where Alice posted a valid decryption attempt record \(r \). Since the adversary Eve can easily post the same record after the record \(r \) by duplicating it, if we require the uniqueness of the record used for decryption in \(R_{\text{ValidEsk}} \), the adversary can easily prevent Alice from decrypting ciphertexts by duplicating and posting the record \(r' \) such that \(r'^i = r \) before the blockchain sufficiently extends.

Thus, by using the first record, even if such a subsequent duplicated record exists, Alice can use the first record as a part of the witness to decrypt. This is why \(R_{\text{ValidEsk}} \) requires the first record to satisfy the relations.

3.5 Proof of Correctness

Before showing correctness of our scheme, we will introduce mild assumptions regarding the execution of the blockchain. Firstly, we will restrict our attention to blockchain executions that lead to a sufficient growth of the blockchain. More specifically, we will refer to a blockchain execution as \(\ell \)-growth respecting if the blockchain of all honest parties is extended with at least \(\ell \) blocks following a broadcast by an honest party. Finally, we restrict the delay in terms of growth of the blockchain, an adversary might introduce for messages broadcast by honest parties. Specifically, we refer to a blockchain execution as \(\ell \)-delay respecting, if the blockchain of any honest users is extended with at most \(\ell \) blocks between an honest user broadcasting a message and this is delivered to all other honest users.

Theorem 1. Assume the signature scheme \(\text{Sig} \) is EUF-CMA secure and that the blockchain protocol \(\text{BLC}_V \) provides \(\ell_c \)-consistency, and \((\ell_2, \beta)\)-sufficient stake for all PPT adversaries with stake at most \(\alpha \) in environment \(Z \). Then the construction described in Figure 3 with parameters \(\text{par} = (\beta, \ell_c, \ell_1, \ell_2) \) satisfies correctness for any PPT correctness-admissible adversary \(A \) in \(Z \) with stake at most \(\alpha < \min(\alpha', \beta) \) in blockchain executions that are \(\ell \)-delay and \((\ell + \ell_1 + 2\ell_2)\)-growth respecting.

Proof (Theorem 1). Firstly note that the definition of \(\ell_c \)-consistency directly implies that for blockchain \(B \) used in the encryption performed in the Enc oracle and the blockchain \(B' \) used in the decryption in the Dec oracle, consistent esk of \(B, B' \) holds with overwhelming probability.

Secondly, since the execution is \((\ell + \ell_1 + 2\ell_2)\)-growth respecting, the blockchain \(B' \) contained in st used in the decryption must be extended with \(\ell + \ell_1 + 2\ell_2 \) blocks after the broadcast of \(r \) in line 6 of the decryption algorithm. Since the execution is also \(\ell \)-delay respecting, \(r \) must have been delivered to all honest miners before \(B' \) has been extended with \(\ell \) blocks, and due to the \((\ell_2, \beta)\)-sufficient stake property and \(\alpha < \beta \), the next \(\ell_2 \) blocks must contain an honestly mined block (which must include \(r \) unless \(r \) has already been posted) with overwhelming probability. Hence, there must be at least \(\ell_1 + \ell_2 \) blocks after the block containing \(r \), and again due to the \((\ell_2, \beta)\)-sufficient stake property, the \(\ell_2 \) last blocks of these will have stake at least \(\beta \). This implies that ext-suf-stk esk of \(B', i^* \) is satisfied, where \(i^* \) is the index of the block containing \(r \).

Combined with the observation that \(r \) is honestly constructed, the above implies that the witness \(B' \parallel esk \) constructed in the decryption is a valid witness unless \(R_{\text{NotYetDecrypted}} \) does not hold. This happens only if the block contains a block with index less than \(i^* \) with a record \(r' \) for which \(r'.\sigma \neq r.\sigma \) but which satisfies \(R_{\text{DecAttempt}}(\text{id}, pk, r') \) for the id used in the encryption. This in turn implies that \(r'.\text{cert} \) is a valid signature on \(r'.\text{id} \parallel r'.\sigma \). However, if \(A \) can cause such a record to be added to \(B' \), we can construct a PPT algorithm \(B \) which breaks the EUF-CMA of the digital signature scheme. \(B \) simply plays the correctness game with \(A \) simulating all honest parties, and using his signing oracle to obtain \(r.\text{cert} \) corresponding to a signature on \(r.\text{id} \parallel r.\sigma \). After the game finishes, it searches \(B' \leftarrow \text{GetRecords}(\beta.\text{st}_A) \) for a valid record \(r' \) (posted by \(A \)) such that \(\text{Sig.Ver}(pk, r'.\text{id} \parallel r'.\sigma, r'.\text{cert}) = 1 \) holds. Lastly, it outputs the pair \((r'.\text{id} \parallel r'.\sigma, r'.\text{cert})\) in the EUF-CMA security game.

Since the signature scheme is assumed to be secure, we conclude that \(B \) will only succeed with negligible probability, and hence, that \(R_{\text{NotYetDecrypted}} \) will hold with overwhelming probability. Thus the theorem holds.

Note that in the above, we assume that WE does not impose a length bound on the used witness. If the maximum witness length of the witness encryption is bounded, we additionally need to assume that the number of records posted
\[\text{(pk, sk)} \leftarrow \text{FSPKE}.KGen(1^\lambda);\]
1. \((\text{pk}, \text{sk}) \leftarrow \text{Sig}.KGen(1^\lambda);\)
2. \text{output} \((\text{pk}, \text{sk});\)
\[c \leftarrow \text{FSPKE}.\text{Enc}(\text{st}, \text{pk}, m);\]
1. \(\text{B} \leftarrow \text{BLCV}.\text{GetRecords}(1^\lambda, \text{st});\)
2. \(\text{id} \leftarrow \{0, 1\}^\lambda;\)
3. \(x \leftarrow (\text{B}, \|\text{id}∥\|\text{pk});\)
4. \(\text{CT} \leftarrow \text{WE.\text{Enc}(1^\lambda, x, m);}\)
5. \text{output} \(c \leftarrow (\text{id}, \text{CT});\)
\[m \leftarrow \text{FSPKE}.\text{Dec}(\text{st}, \text{sk}, c);\]
1. \(\text{Parse} \ c \ \text{as} (\text{id}, \text{CT});\)
2. \(\text{es}k \leftarrow \{0, 1\}^\lambda;\)
3. \(\sigma \leftarrow \text{H}(\text{es}k);\)
4. \(\text{cert} \leftarrow \text{Sig}.\text{Sign}(\text{sk}, \text{id}∥\|\sigma);\)
5. \(r := (\text{id}∥\|\sigma || \text{cert});\)
6. \(\text{BLCV}.\text{Broadcast}(1^\lambda, r);\)
7. \(\text{B} \leftarrow \text{BLCV}.\text{GetRecords}(1^\lambda, \text{st});\)
8. \(\text{While} \ r \notin \text{B}^{l_1 + l_2};\)
9. \(\text{B} \leftarrow \text{BLCV}.\text{GetRecords}(1^\lambda, \text{st});\)
10. \(w := (\text{B} || \text{es}k);\)
11. \(m \leftarrow \text{WE.\text{Dec}(CT, w);}\)
12. \text{Erase} \text{es}k \ and \ then \ output \ m.

Fig. 3 A construction of FSPKE where WE is a witness encryption scheme for the NP relation \(R_{\text{FSPKE}}\) (defined in Figure 4), BLCV is a blockchain protocol with the validity predicate \(V\) and parameters \(\text{par} = (\beta, \ell_c, \ell_1, \ell_2)\), \text{Sig} is a public key signature scheme, and \(H\) is a one-way hash function.

A pair of NP instance \(x = (\text{B} || \text{id}∥\|\text{pk})\) and a witness \(w = (\text{B}' || \text{es}k)\) satisfies \(R_{\text{FSPKE}}\) if and only if the following properties are satisfied:
\[R_{\text{FSPKE}}(\text{B} || \text{id}∥\|\text{pk}, \text{B}' || \text{es}k) := R_{\text{ValidBlocks}}(\text{B}, \text{B}') \land R_{\text{ValidEsk}}(\text{pk}, \text{id}, \text{B}', \text{es}k) \land \text{consistent}^\ell(\text{B}, \text{B}')\]

where
\[R_{\text{ValidBlocks}}(\text{B}, \text{B}') := \begin{cases} 1 \text{ if } \forall 0 < i < i^* \land \text{ext-suf-stk}(\beta, \ell_c, \ell_1, \ell_2)(\text{B}', i^*) \land R_{\text{DecAttempt}}(\text{id}, \text{pk}, r) := (\text{r.id} = \text{id}) \\ \land (\text{Sig.\text{Ver}}(\text{pk}, \text{r.id}∥\|r.\sigma, r.\text{cert}) = 1) \end{cases}\]
\[R_{\text{DecAttempt}}(\text{id}, \text{pk}, r) := (\exists 0 < j < j^*) \\ \land (\text{NotYetDecrypted}(\text{B}', i^*, j^*, \text{id}, \text{pk}) := (\forall 0 \leq j < j^*, \neg R_{\text{DecAttempt}}(\text{id}, \text{pk}, (\text{B}', [i^*][j][j^*])) \land (\forall 0 \leq i < i^*, \forall 0 \leq j < [\text{B}'][i^*][j][j^*])) \land (\text{KnownEsK}(\text{B}', i^*, j^*, \text{es}k) := \text{H}(\text{es}k) = (\text{B}'[i^*][j][j^*].\sigma})\]

Fig. 4 An NP relation \(R_{\text{FSPKE}}\) based on the blockchain protocol BLCV with validity predicate \(V\) and parameters \(\text{par} = (\beta, \ell_c, \ell_1, \ell_2)\), \text{Sig} is a public key signature scheme, and \(H\) is a one-way hash function.

However, we note that Alice is still able to decrypt both \(c_B\) and \(c_E\) because at least one of the decryption attempts is still valid i.e. as long as Alice stores the witnesses for the ciphertexts being decrypted concurrently, she will be able to decrypt \(c_B\) and \(c_E\), assuming the latter is otherwise correctly constructed (note that correctness does not guarantee that maliciously constructed ciphertexts can be decrypted).

Lastly, we note that correctness would still hold even if the encryptor bases his encryption on a previously obtained version of the blockchain as opposed to the most recent up-to-date version. This is because our construction (Figure 4) only requires the blockchain \(\text{B}\) used in encryption to be a prefix of and be consistent (w.r.t. consistent \(^\ell\) as defined in Section 2.2) with the decryptor’s blockchain \(\text{B}'\). However, note again that if the witness encryption only supports witnesses of bounded size, the difference in terms of blocks be-

However, we note that Alice is still able to decrypt both \(c_B\) and \(c_E\) because at least one of the decryption attempts is still valid i.e. as long as Alice stores the witnesses for the ciphertexts being decrypted concurrently, she will be able to decrypt \(c_B\) and \(c_E\), assuming the latter is otherwise correctly constructed (note that correctness does not guarantee that maliciously constructed ciphertexts can be decrypted).

Lastly, we note that correctness would still hold even if the encryptor bases his encryption on a previously obtained version of the blockchain as opposed to the most recent up-to-date version. This is because our construction (Figure 4) only requires the blockchain \(\text{B}\) used in encryption to be a prefix of and be consistent (w.r.t. consistent \(^\ell\) as defined in Section 2.2) with the decryptor’s blockchain \(\text{B}'\). However, note again that if the witness encryption only supports witnesses of bounded size, the difference in terms of blocks be-

However, we note that Alice is still able to decrypt both \(c_B\) and \(c_E\) because at least one of the decryption attempts is still valid i.e. as long as Alice stores the witnesses for the ciphertexts being decrypted concurrently, she will be able to decrypt \(c_B\) and \(c_E\), assuming the latter is otherwise correctly constructed (note that correctness does not guarantee that maliciously constructed ciphertexts can be decrypted).

Lastly, we note that correctness would still hold even if the encryptor bases his encryption on a previously obtained version of the blockchain as opposed to the most recent up-to-date version. This is because our construction (Figure 4) only requires the blockchain \(\text{B}\) used in encryption to be a prefix of and be consistent (w.r.t. consistent \(^\ell\) as defined in Section 2.2) with the decryptor’s blockchain \(\text{B}'\). However, note again that if the witness encryption only supports witnesses of bounded size, the difference in terms of blocks be-

However, we note that Alice is still able to decrypt both \(c_B\) and \(c_E\) because at least one of the decryption attempts is still valid i.e. as long as Alice stores the witnesses for the ciphertexts being decrypted concurrently, she will be able to decrypt \(c_B\) and \(c_E\), assuming the latter is otherwise correctly constructed (note that correctness does not guarantee that maliciously constructed ciphertexts can be decrypted).

Lastly, we note that correctness would still hold even if the encryptor bases his encryption on a previously obtained version of the blockchain as opposed to the most recent up-to-date version. This is because our construction (Figure 4) only requires the blockchain \(\text{B}\) used in encryption to be a prefix of and be consistent (w.r.t. consistent \(^\ell\) as defined in Section 2.2) with the decryptor’s blockchain \(\text{B}'\). However, note again that if the witness encryption only supports witnesses of bounded size, the difference in terms of blocks be-

However, we note that Alice is still able to decrypt both \(c_B\) and \(c_E\) because at least one of the decryption attempts is still valid i.e. as long as Alice stores the witnesses for the ciphertexts being decrypted concurrently, she will be able to decrypt \(c_B\) and \(c_E\), assuming the latter is otherwise correctly constructed (note that correctness does not guarantee that maliciously constructed ciphertexts can be decrypted).

Lastly, we note that correctness would still hold even if the encryptor bases his encryption on a previously obtained version of the blockchain as opposed to the most recent up-to-date version. This is because our construction (Figure 4) only requires the blockchain \(\text{B}\) used in encryption to be a prefix of and be consistent (w.r.t. consistent \(^\ell\) as defined in Section 2.2) with the decryptor’s blockchain \(\text{B}'\). However, note again that if the witness encryption only supports witnesses of bounded size, the difference in terms of blocks be-
3.6 Efficiency

The efficiency of our construction essentially follows from the efficiency of the underlying signature scheme, witness encryption scheme, and blockchain. We emphasize that neither encryptor nor decryptor are required to participate in the blockchain protocol itself, but are only required to be able to access an up-to-date version of the blockchain, and in case of the decryptor, be able to post a message to the blockchain e.g. by requesting a miner to do so. Depending on the premise of the blockchain protocol execution, the latter might involve an additional cost to the decryptor (e.g. paying a fee to the miner).

In more detail, key generation and public/private key size correspond to that of the signature scheme, and the computational encryption cost and the ciphertext size correspond to that of the witness encryption scheme, assuming accessing the blockchain does not involve any computational requirements. Decryption firstly requires the decryptor to post a signed message to the blockchain. Note that he will not be able to immediately decrypt once this has been posted, but must wait for the blockchain to grow sufficiently to satisfy distinguishable forking (Definition 6). Once this happens, he will invoke the decryption of the witness encryption scheme, which will most likely dominate the computational decryption cost (compared to signing). We refer the reader to Section 2.1.1 for a discussion of potential witness encryption instantiations.

Finally, we note that the relation in Figure 4, which is required to be implemented by the witness encryption, is relatively complex, which could be an efficiency concern as ciphertext size and encryption/decryption cost typically scale with the size and complexity of the encryption statement and witness\(^1\). However, as noted in [20], this can be addressed by the use of succinct non-interactive arguments of knowledge (SNARKs) (e.g. see [17]). In our construction, the decryptor could include a SNARK common reference string in his public key\(^2\), allowing the relation in Figure 4 to be proved using the SNARK and the witness encryption to only rely on the verification and succinct witness from the SNARK. This would alleviate concerns regarding encryption cost and ciphertext size.

4. Security Analysis

The following theorem establishes the security of our construction.

Theorem 2. Assume WE is an extractable witness encryption scheme for the NP relation \(R_{\text{SPKE}}\), \(\operatorname{Sig}\) is an EUF-CMA-secure signature scheme, \(H\) is a one-way hash function, and \(\text{BLC}_V\) is a blockchain protocol satisfying \((\alpha, \beta, \ell_1, \ell_2)\)-distinguishable forking property for any PPT adversary with stake fraction at most \(\alpha\) in environment \(Z\). Then the construction described in Figure 3 is fs-IND-CPA secure for any admissible PPT adversary \(A\) in \(Z\) with at most \(\alpha\) stake fraction.

4.1 Proof of Theorem 2

4.1.1 Simulation of the blockchain

Theorem 2 is with respect to an adversary \(A\) who controls at most an \(\alpha\) stake fraction of the blockchain. With the exception of Claim 3, our security reduction will simulate the parties holding the remaining stake fraction for \(A\), by honestly executing the blockchain protocol \(\text{BLC}_V\). We do not include an explicit simulation of this in the following proof.

Proof (Theorem 2). Let \(\text{FORGE}\) be the event that \(A\) causes honest user \(j\) to add a maliciously constructed record \(r^*\) to the blockchain contained in \(s_t\) that can be used to decrypt the challenge ciphertext \(c^*\). More precisely, \(\text{FORGE}\) denotes that \(r^*\) is the first record in sequence of blocks \(B \leftarrow \text{GetRecords}(1^{\lambda}, s_t)\) satisfying \(\operatorname{Sig}_{\text{Ver}}(pk, r^*, \| r^*, \sigma, r^*, \text{cert}) = 1\). Note that since the \(\text{Leak}\) oracle will add a valid record to the blockchain contained in \(s_t\), for decryption of \(c^*\), \(A\) needs to compute \(r^*, \text{cert}\) and post \(r^*\) before \(\text{Leak}\) does so (i.e. without \(sk\)) for \(\text{FORGE}\) to occur. That is, intuitively speaking, posting \(r^*\) means that \(A\) can forge a valid signature \(r^*, \text{cert}\). In the following lemma, we formalize this intuition.

Lemma 1. Assume that \(\text{Sig}\) is an EUF-CMA secure signature scheme. Then \(\Pr[\text{FORGE}] < \text{neg}(\lambda)\).

Proof (Lemma 1). If \(\text{FORGE}\) occurs, we can construct an adversary \(B_{\text{Sig}}\) which breaks EUF-CMA security of \(\text{Sig}\). \(B_{\text{Sig}}\) simulates the role of a challenger in the fs-IND-CPA game for \(A\), and is defined as follows:

1. Upon receiving \(pk\) in the EUF-CMA game, \(B_{\text{Sig}}\) forwards \(pk\) to \(A\). When running, \(B_{\text{Sig}}\) simulates all honest parties in the blockchain and executes the blockchain protocols honestly. If \(\text{HonestDec}(c)\) is called where \(c = (\text{id}, CT)\), \(B_{\text{Sig}}\) performs the decryption operations

\[^1\]For ease of notation, as in [14], we use the entire blockchain \(B\) as part of the witness \(w\). However, we note that essentially only the blocks appended to the blockchain after encryption suffice as part of the witness \(w\).

\[^2\]Note that in our construction, the lower bound of the witness size would be \(\ell_1 + \ell_2 + \ell_d\) blocks where \(\ell_1\) and \(\ell_2\) are blockchain-specific parameters from the distinguishable forking property (see Section 2.2), and \(\ell_d\) is the difference in the number of blocks between the blockchain obtained by encryptor and decryptor.

\[^\dagger\dagger\dagger\dagger\]We note the approach by Goyal et al. [15] allows efficient encryption and only requires the decryptor to perform a potentially heavy computation related to the relevant statement and witness.

\[^\dagger\dagger\dagger\dagger\]To maintain forward security, the randomness and trapdoor for this common reference string must be securely erased by the key pair holder after key generation.
as described in Figure 3 except it computes \(\text{cert} \) using the signing oracle of the EUF-CMA game. Lastly, \(B_{\text{Sig}} \) adds \((id \parallel \sigma)\) to a set \(\Sigma \). When \(A \) calls \text{Leak}, \(B_{\text{Sig}} \) aborts \(A \) after decryption of \(c^* \), before the secret key \(sk \) is returned.

2. When \(A \) finishes its execution (or is terminated by \(B_{\text{Sig}} \) due to a call to \text{Leak}), \(B_{\text{Sig}} \) searches the blockchain \(B \leftarrow \text{GetRecords}(1^\lambda, s_i) \) for a valid record \(r^* \) such that \((r^*.id \parallel r^*.\sigma) \notin \Sigma \), and outputs \((r^*.id \parallel r^*.\sigma, r^*.\text{cert})\) if such a record is found.

From the above description, it should be clear that \(B_{\text{Sig}} \) provides a perfect simulation for \(A \) up until abortion, and that, assuming \text{FORGE} occurs, \(B_{\text{Sig}} \) returns a valid forgery. \(\qed \)

Let \(S \) be the event that the adversary \(A \) wins the \(\text{fs-IND-CPA} \) game. In the following lemma, we consider the case \(A \) wins the game without causing a valid maliciously constructed record to the blockchain of honest user \(j \) that can be used for decrypting the challenge ciphertext, i.e. without \text{FORGE} occurring.

Lemma 2. Assume \text{WE} is an extractable witness encryption scheme, \(H \) is a one-way hash function, and the blockchain protocol \(\text{BLC}_V \) satisfies \((\alpha, \beta, \ell_1, \ell_2)\)-distinguishable forking property in \(Z \). Then \(|Pr[S \leftarrow \text{FORGE}] - \frac{1}{2}| \leq \text{neg}(\lambda) \).

Proof (Lemma 2). Assume there exists an fs-IND-CPA attacker \(A \) with non-negligible advantage \(\varepsilon = |Pr[S \leftarrow \text{FORGE}] - \frac{1}{2}| \). From \(A \), we construct an attacker \(\mathcal{A}_y^{\text{WE}} \) against \(\text{WE} \) as follows. Firstly, we choose random \(\text{esk} \leftarrow \{0,1\}^n \), and compute \(y \leftarrow H(\text{esk}) \). The value \(y \) will be hardcoded into \(\mathcal{A}_y^{\text{WE}} \), and we use the notation \(\mathcal{A}_y^{\text{WE}} \) to denote this. Hardcoding \(y \) into \(\mathcal{A}_y^{\text{WE}} \) is needed, as below, we will consider a value \(y \) given by an external one-way challenger for \(H \), and hence, \(\mathcal{A}_y^{\text{WE}} \) cannot generate \(y \) internally.

\(\mathcal{A}_y^{\text{WE}} \) will simulate the fs-IND-CPA game for \(A = (A_1, A_2) \) as follows:

1. \(\mathcal{A}_y^{\text{WE}} \) generates a FSPKE key pair as \((pk, sk) \leftarrow \text{FSPKE.KGen}(1^\lambda)\).
2. \(\mathcal{A}_y^{\text{WE}} \) sends \(pk \) to \(A_1 \) and forwards its output \(m_0, m_1 \) and \(x = (B \parallel id \parallel pk) \) as the challenge instance in the extractability game, where \(B \) and \(id \) are computed as \(B \leftarrow \text{BLC}_V.\text{GetRecords}(1^\lambda, st_i) \) and \(id \leftarrow \xi \circ {0,1}^\lambda \) respectively.
3. Upon receiving the challenge ciphertext \(c^* \), \(\mathcal{A}_y^{\text{WE}} \) forwards \(c^* \) to \(A_2 \).
 - If \(\text{HonestDec} \) oracle is called by \(A \), \(\mathcal{A}_y^{\text{WE}} \) executes step 1 to 5 of the decryption algorithm for the given ciphertext \(c^* \), as defined in the construction, except it replaces \(\sigma \) with the hardcoded value \(y \) if \(c \) is the challenge ciphertext\(^1\).
 - If the \text{Leak} oracle is called by \(A \), \(\mathcal{A}_y^{\text{WE}} \) responds in the same way as in \(\text{HonestDec} \), and then returns \(sk \).

4. Lastly, \(A_2 \) outputs \(b \), and \(\mathcal{A}_y^{\text{WE}} \) forwards this as its own response in the extractability game.

From the above description, it should be clear that the view of \(A \) is identical to the fs-IND-CPA game, and that if \(A \) successfully distinguishes the encryption of \(m_0 \) and \(m_1 \), so will \(\mathcal{A}_y^{\text{WE}} \) in the extractable witness encryption game. Since \(\text{WE} \) is extractable, there exists a PPT extractor \(E \) for \(\mathcal{A}_y^{\text{WE}} \), and assuming we can show that \(\mathcal{A}_y^{\text{WE}} \) successfully distinguishes with a non-negligible advantage, \(E \) will likewise be able to compute a valid witness with non-negligible advantage. However, here a subtle issue arises: from the assumption that the advantage of \(A \) is \(\varepsilon \), it only follows that \(\mathcal{A}_y^{\text{WE}} \) has advantage \(\varepsilon \) when the choice of \(y \) is considered part of the probability space defining the advantage. For a fixed value of \(y \), even if this is correctly distributed, we can no longer draw the conclusion that \(\mathcal{A}_y^{\text{WE}} \) has advantage \(\varepsilon \). Nevertheless, the following claim shows that, with probability \(\varepsilon/2 \) over the choice of \(y \), \(\mathcal{A}_y^{\text{WE}} \) will have an advantage larger than \(\varepsilon/2 \).

Claim 1. Let \(b' \) denote the bit output by \(\mathcal{A}_y^{\text{WE}} \), let \(b \) denote the challenge bit in the extractability game, and let \(\text{Good}_y \) denote the event that \(Pr[b \neq b'] \geq \varepsilon/2 + 1/2 \). Then, \(Pr[\text{Good}_y] \geq \varepsilon/2 \), where the probability is taken over a random choice of \(\text{esk} \leftarrow \{0,1\}^n \) and \(y \leftarrow H(\text{esk}) \).

Proof (Claim 1). Let \(\text{Succ} \) denote the event \(b' = b \) when \(\text{esk} \leftarrow \{0,1\}^n \) is picked at random and \(y \leftarrow H(\text{esk}) \). From the construction of \(\mathcal{A}_y^{\text{WE}} \) and the assumption that the advantage of \(A \) is \(\varepsilon \), we have that \(Pr[\text{Succ}] = \varepsilon + 1/2 \). Hence,

\[
\varepsilon + 1/2 = Pr[\text{Succ}|\text{Good}_y]Pr[\text{Good}_y] + Pr[\text{Succ}|\neg\text{Good}_y]Pr[\neg\text{Good}_y]
\]

\[
\leq Pr[\text{Good}_y] + Pr[\text{Succ}|\neg\text{Good}_y]
\]

\[
\leq Pr[\text{Good}_y] + \varepsilon/2 + 1/2
\]

where the last inequality follows by the definition of \(\neg\text{Good}_y \). Rearranging the terms, we obtain \(Pr[\text{Good}_y] \geq \varepsilon/2 \). \(\qed \)

The above claim allows us to conclude that we can extract a valid witness for \(x \) specified by \(\mathcal{A}_y^{\text{WE}} \) (including its internal fs-IND-CPA attacker \(A \)) with non-negligible probability, despite invoking the extractor \(E \) with \(\mathcal{A}_y^{\text{WE}} \) for a fixed (but randomly chosen) \(y \). This can be seen as follows. Let \(w \) denote the witness extracted by \(E \) from \(\mathcal{A}_y^{\text{WE}} \). Then we have that

\[
Pr[R_{\text{FSPKE}}(x, w)] \geq Pr[b = b' \land R_{\text{FSPKE}}(x, w)]
\]

\[
\geq Pr[\text{Good}_y] \cdot Pr[b = b' \land R_{\text{FSPKE}}(x, w)|\text{Good}_y]
\]

\[
\geq \varepsilon/2 \cdot Pr[b = b' \land R_{\text{FSPKE}}(x, w)|\text{Good}_y].
\]

By definition, \(\text{Good}_y \) ensures that the advantage of \(\mathcal{A}_y^{\text{WE}} \) is

\(^1\text{Note that } \mathcal{A}_y^{\text{WE}} \text{ cannot fully decrypt the challenge ciphertext } c^*, \text{ as it does not know the preimage of the hardcoded value } y, \text{ which is required to construct a witness for decryption.}\)
greater than $\varepsilon/2$, and we obtain that

$$\frac{\varepsilon}{2} \leq \Pr[b = b' | \text{Good}_y] - \frac{1}{2}$$

$$\leq \Pr[b = b' \land R_{\text{FSPKE}}(x, w) | \text{Good}_y]$$

$$+ \Pr[b = b' \land \neg R_{\text{FSPKE}}(x, w) | \text{Good}_y] - \frac{1}{2}$$

$$\leq \Pr[b = b' \land R_{\text{FSPKE}}(x, w) | \text{Good}_y] + \text{neg}(\lambda)$$

where the last inequality follows from the extractability of WE (note that extractability requires a successful extractor exists for all successful adversaries, including any adversary $A_{y'}^{\text{WE}}$ for values of y such that Good y is satisfied). Rearranging the terms yields that

$$\Pr[b = b' \land R_{\text{FSPKE}}(x, w) | \text{Good}_y] \geq \frac{\varepsilon}{2} - \text{neg}(\lambda)$$

and combining this with (1) we obtain that

$$\Pr[R_{\text{FSPKE}}(x, w)] \geq \frac{\varepsilon}{2} \cdot \left(\frac{\varepsilon}{2} - \text{neg}(\lambda)\right).$$

Note that if ε is non-negligible, then so is $\Pr[R_{\text{FSPKE}}(x, w)]$. In other words, with non-negligible probability, we obtain a valid witness w for x specified by $A_{y'}^{\text{WE}}$ via the extractor E.

In the following, we will show that if a valid witness can be extracted, we can either break the onewayness of the hash function H, or the distinguishable forking property of BLCV.

Let HONEST be the evolution that E outputs a sequence of blocks B' containing the record r^* honestly constructed in the first decryption query of the challenge ciphertext c^* (either a query to Dec or Leak) as the first valid record that allows decryption of c^*. We have that

$$\Pr[R_{\text{FSPKE}}(x, w)] = \Pr[R_{\text{FSPKE}}(x, w) | \text{HONEST}] \cdot \Pr[\text{HONEST}] + \Pr[R_{\text{FSPKE}}(x, w) | \neg \text{HONEST}] \cdot \Pr[\neg \text{HONEST}]$$

$$\leq \Pr[R_{\text{FSPKE}}(x, w) | \text{HONEST}] + \Pr[R_{\text{FSPKE}}(x, w) | \neg \text{HONEST}].$$

Claim 2. If $\Pr[R_{\text{FSPKE}}(x, w) | \text{HONEST}]$ is non-negligible, there exists an adversary B_{OW} against the onewayness of H with non-negligible advantage.

Proof (Claim 2). B_{OW} is constructed as follows. Given a challenge y^*, B_{OW} simply constructs $A_{y'}^{\text{WE}}$ as described above, but using y^* as the embedded y value. Note that as B_{OW}’s challenge is constructed as $y^* = H(w.\text{esk}^*)$ for a randomly chosen $w.\text{esk}^*$, the construction of $A_{y'}^{\text{WE}}$ is identical to the above description. B_{OW} then runs E for $A_{y'}^{\text{WE}}$ to obtain a witness w, and forwards $w.\text{esk}$ as the solution in the onewayness game. Since HONEST occurs, E outputs a witness w corresponding to the honestly created record r^* for the challenge ciphertext c^* i.e. r^* must have been posted by the HonestDec or the Leak oracle. Furthermore, it must hold that $H(w.\text{esk}) = r^* \cdot \sigma$, and due to the construction of $A_{y'}^{\text{WE}}$, $r^* \cdot \sigma = y^*$. Thus the obtained value $w.\text{esk}$ satisfies $w.\text{esk} = H^{-1}(y^*)$, and B_{OW} therefore successfully wins the onewayness game.

Claim 3. If $\Pr[R_{\text{FSPKE}}(x, w) | \neg \text{HONEST}]$ is non-negligible, there exists an adversary B_{BLC} breaking the $(\alpha, \beta, \ell_1, \ell_2)$-distinguishable forking property of the blockchain with non-negligible advantage.

Proof (Claim 3). The construction of B_{BLC} is straightforward: B_{BLC} simply runs E, and returns its output B'. Note, however, that B_{BLC} plays the role of an adversary against the distinguishable forking property of the blockchain, and therefore must abide by the rules for this type of adversary. In particular, B_{BLC} cannot control the honest parties participating in the blockchain protocol. Nevertheless, the simulation remains straightforward: B_{BLC} simply corrupts the parties required by the underlying adversary A, who will have a total stake fraction at most α, and forwards any messages to honest parties over the blockchain network as dictated by A.

Since HONEST is assumed not to occur, the first valid record r' in B' allowing decryption of c^* does not correspond to the honestly generated record r^* in a Dec or Leak upon submission of c^* (recall that B' from a valid witness is required to contain a valid record allowing decryption of c^*). Furthermore, since FORGE is also assumed not to occur, r' cannot occur before r^* in the honest blockchain $B'' \leftarrow \text{GetRecords}(1^\lambda, s_t^j)$ held by the honest user j. This implies that from the block in B' in which r' occurs, B' cannot be a prefix of B''. Additionally, witness correctness implies that there are at least $\ell' = \ell_1 + \ell_2$ blocks after the block in which r' occurs, and that the last $\ell' - \ell_1$ of these contain a combined stake fraction more than β. Hence, B' contradicts the $(\alpha, \beta, \ell_1, \ell_2)$-distinguishable forking property, which requires these blocks to contain a stake fraction less than $\alpha < \beta$. Hence, Claim 3 follows.

Combining the above observations, we conclude that the existence of an adversary A with non-negligible advantage implies $\Pr[R_{\text{FSPKE}}(x, w)]$ being non-negligible, which in turn implies that either the onewayness of H or the distinguishable forking property of BLCV can be broken with non-negligible advantage due to (2) in combination with Claim 2 and Claim 3. This contradicts the assumption that H and BLCV are secure, and we hence conclude that all A must have negligible advantage. Hence, Lemma 2 follows.
Adv_{A,\text{FS-PKE}}(\lambda) \\
= \left| \Pr[S] - \frac{1}{2} \right| \\
= \left| \Pr[S|\text{FORGE}] \Pr[\text{FORGE}] \right. \\
+ \left. \Pr[S|\neg\text{FORGE}] \Pr[\neg\text{FORGE}] - \frac{1}{2} \right| \\
\leq \left| \Pr[S|\neg\text{FORGE}] \Pr[\neg\text{FORGE}] - \frac{1}{2} + \Pr[\text{FORGE}] \right| \\
\leq \left| \Pr[S|\neg\text{FORGE}] (1 - \Pr[\text{FORGE}]) - \frac{1}{2} \right| + \Pr[\text{FORGE}] \\
\leq \text{neg}(\lambda) + \text{neg}(\lambda) = \text{neg}(\lambda).

Hence, Theorem 2 follows.

5. Post-Compromise Security

In this section, we discuss a security notion called post-compromise security (PCS) [9], which is not typically considered for PKE. The following is an informal definition of PCS for authenticated key exchange (AKE) introduced in [9]:

A protocol between Alice and Bob provides Post-Compromise Security (PCS) if Alice has a security guarantee about communication with Bob, even if Bob’s secrets have already been compromised.

By considering encryption, transmission of the ciphertext and corresponding decryption to be a protocol, the above provides a PCS notion for a PKE scheme. Note that while forward security considers past ciphertexts decrypted before a key compromise, PCS considers security guarantees on future ciphertexts sent after a key compromise.

Intuitively, due to the non-interactive nature of encryption and decryption, once the secret key has been compromised, all security guarantees appear to be lost since the adversary has all the required inputs to decrypt a ciphertext. However, our construction provides certain security guarantees even after a key compromise, which we will discuss in the following.

5.1 PCS of Proposed PKE Scheme

In PKE, the adversary is assumed to know the long-term secrets, and we thus need to consider additional assumptions to rule out a trivial attack as the adversary already knows all the inputs to impersonate the compromised user in the case of AKE or decrypt a ciphertext in the case of PKE. For example, in PKE for AKE ([9]), it is assumed there is at least one uncompromised session before the session under attack, in order to achieve PCS. In the uncompromised session, honest parties can establish a secret which the adversary cannot obtain and thus it is possible to achieve some security guarantees by relying on this uncompromised secret.

Likewise, for PCS of our PKE construction, we consider the following assumption: an honest decryptor successfully decrypts the challenge ciphertext c^*. Under this assumption, we claim the following security guarantee:

Claim 4. Assume WE is an extractable witness encryption scheme, H is a one-way hash function, and the blockchain protocol BLC_V satisfies $(\alpha, \beta, \ell_1, \ell_2)$-distinguishable forking property.

In our PKE scheme, suppose an adversary Eve knows Alice’s long-term secret key sk and eavesdrops the challenge ciphertext c^*. As long as Alice decrypts c^* successfully, Eve cannot learn any information regarding the plaintext of c^* with all but negligible probability.

Proof Sketch (Claim 4). Claim 4 assumes Alice successfully decrypts c^*. This assumption implies that Alice is the first to post a valid decryption record to the blockchain, as this is required for the NP relation used for the witness encryption scheme to hold true. Specifically, $R_{\text{NotYetDecrypted}}$ (Figure 4) must hold.

This is similar to what was discussed in Lemma 2, specifically the case where the adversary does not post a valid decryption attempt for c^* to the blockchain in the s-IND-CPA game. Following a similar argument, if the adversary can determine the plaintext of c^*, we can construct an adversary against the extractable witness encryption.

Since WE is extractable, there then exists a PPT extractor E which extracts a witness to decrypt c^*. While Eve knows the long-term secret key sk, because it is used only for signing a decryption attempt and the first decryption attempt posted by Alice already exists in the blockchain, as we showed in Claim 2 and Claim 3, E needs to break the onewayness of H or forge a fork of a blockchain excluding Alice’s decryption attempt. This contradicts the assumption that H and BLC_V are secure. Hence, Claim 4 follows.

Claim 4 means that Eve needs to win a decryption race with Alice for every ciphertext and only the winner can decrypt a given ciphertext. Moreover, even if Alice loses the race, there is still an interesting security property we call key compromise detection, which allows Alice to detect this. We discuss this in the following section.

5.2 Key Compromise Detection

Our construction requires the decryptor to post an appropriate message to the blockchain to decrypt a ciphertext. Specifically, Alice (holding the key pair pk_A and sk_A) is required to post a record r to the blockchain such that $\text{Sig}_V(pk_A, r, \text{id} || \text{id}, \text{CT}) = 1$ holds to be able to decrypt a ciphertext $c = (\text{id}, \text{CT})$.

By monitoring the blockchain and checking if such a record is posted, Alice will notice if someone else is trying to decrypt her ciphertext using her private key. Hence, it is possible for Alice to detect a key compromise if the compromised key is ever attempted to be used for decryption. This property is not achievable if decryption can be done without any information being made public.
6. Discussion

Besides forward security, and the additional post compromise security properties discussed above, our construction provides other interesting properties which lead to advantages compared to existing approaches, but also impacts aspects such as decryption privacy. In the following, we discuss these in further detail.

6.1 Fixed Immutable Secret Keys

The unique feature of our construction is that forward security is achieved without key updates, and secret keys are short and immutable. This property provides several advantages.

Firstly, while the size of secret keys in most previous works [8, 16] depends on the number of key updates, our construction achieves a constant size secret key and furthermore does not impose a predetermined maximum number of possible key updates (such as Bloom filter encryption [11]).

Secondly, fixed immutable keys are interesting from an application point of view. For example, a fixed secret key can be embedded in secure read-only memory, which would provide an additional hardware-based defense against key compromise. Note that in our construction, the secret key is only required for signature generation, which is a standard functionality supported by most trusted platform modules (TPMs), and that the remaining part of decryption can be done without direct access to the secret key. In contrast, providing similar protection for a dynamically changing secret key of non-constant size is a harder task requiring a more advanced trusted execution environment, which in turn is more difficult and expensive to implement securely.

Lastly, a fixed secret key allows the key to be distributed among several independent devices or servers without introducing security concerns due to a potential lack of synchronization. Key distribution might be desirable e.g. if the same user uses several different devices or several servers are used to implement load balancing (here the servers look like one server from the outside). In this case, security concerns might arise for schemes implementing fine-grained forward security based on key update. For example, if a device decrypts a ciphertext c, the local key of that device will be rendered useless for future decryptions of c to ensure forward security. However, unless the keys stored by all other devices are updated with respect to c, an adversary will still be able to decrypt c by compromising a device with a key that has not yet been updated. Hence, this creates a potentially significant synchronization problem. On the other hand, this problem is completely eliminated by a scheme with fixed secret keys, as there is no need to update keys to ensure security.

6.2 Decryption Privacy

As we discussed in Section 5.2, our construction requires the decryptor to post an appropriate message to the blockchain to decrypt a ciphertext.

As r.cert (Section 5.2) is publicly verifiable with respect to Alice’s public key pk_A and id uniquely identifies c, anyone monitoring the blockchain, which is assumed to be publicly accessible, will be able to tell when Alice decrypts a specific ciphertext, i.e. the construction does not provide Alice with privacy regarding decryption.

6.3 One-Time Decryption

In existing fine-grained encryption schemes without interaction [11,16,18], basically a ciphertext can be decrypted only once even by a legitimate user because an updated secret key cannot be used for decrypting past ciphertexts; the same limitation applies to our construction. Note that one-time decryption is an inherent property of fine-grained forward security.

6.4 Message Suppression Attacks and Mitigations

As we mentioned in Section 3.2, a standard fine-grained forward-secure scheme with perfect correctness inherently does not protect against message suppression attacks [6]. A message suppression attack is a man-in-the-middle attack where the attacker is assumed to control the communication between an encryptor and decryptor simply and does not deliver a given ciphertext c. Then, if the attacker is allowed to compromise the secret key, he will be able to decrypt c due to the perfect correctness of the scheme and the fact that c has not been attempted to decrypt by the legitimate decryptor.

To mitigate the attack in our construction, we can introduce decryption expiration (similar to eventual forward security [6]) by checking in the witness relation $RefPe(x, w)$ that the number of blocks in w.B is less than a predefined expiration threshold. This ensures that if the adversary does not compromise the secret key before the extension of the blockchain passes the threshold, he will not be able to decrypt the intercepted ciphertext. However, this will also require the legitimate decryptor to decrypt the ciphertext before the expiration, as he would otherwise lose the ability to do so. Finally note that this change does not interfere with the property that once the decryptor has decrypted a ciphertext, this can no longer be decrypted by an adversary compromising the decryption key i.e. fine-grained forward security is maintained.

In addition to introducing decryption expiration, our construction can detect a message suppression attack thanks to key compromise detection (Section 5.2). If Eve tries to decrypt a ciphertext which Alice does not know, since the

1In a scheme based on periodical key updates, this type of attack does not work assuming the key has been updated after the ciphertext was constructed and the attacker compromises this updated key. However, schemes based on periodical key updates only achieve coarse-grained forward security (eventual forward security [6]) and are still vulnerable to the attack until the key is updated.
decryption attempt is recorded in the blockchain, Alice can notice that the message suppression attack happened to her.

Acknowledgments. This work was supported in part by JSPS KAKENHI Grant Number 20K11807.

References

Appendix A: Intuition Behind Definition 2

For clarity, we explain why an extractor \mathcal{E} with success probability $\varepsilon(\lambda) - \text{neg}(\lambda)$ exists. Observe that if \mathcal{A} has success probability $1/2 + \varepsilon(\lambda)$ in guessing b, we have

$$
\varepsilon(\lambda) = \Pr[b = b'] - \frac{1}{2} = \Pr[b = b \land R(x,w)] + \Pr[b = b' \land \neg R(x,w)] - \frac{1}{2} \\
\leq \Pr[b = b \land R(x,w)] + \Pr[b = b' \land \neg R(x,w)] - \frac{1}{2} \\
\leq \Pr[b = b' \land R(x,w)] + \text{neg}(\lambda)
$$

where the last inequality follows by Definition 2. Rearranging the terms, we obtain $\Pr[b' = b \land R(x,w)] \geq \varepsilon(\lambda) - \text{neg}(\lambda)$. Since $\Pr[b' = b \land R(x,w)]$ is non-negligible if the \mathcal{A}’s advantage $\varepsilon(\lambda)$ is non-negligible, it leads to the existence of a successful $\mathcal{E}^{\mathcal{O}}$ extracting the witness w. We use this extractability property in the security proof to rigorously show that there exists a reduction which breaks the underlying hardness assumptions with non-negligible probability.

Appendix B: IND-CPA Security

For reference, we present the IND-CPA security game for ordinary PKE scheme.

Definition 10 (IND-CPA). Let $PKE = (PKE, KGen, PKE.Enc, PKE.Dec)$ be a public-key encryption scheme. We define the IND-CPA security game $G_{\mathcal{A},PKE}^{\text{IND-CPA}}(\lambda)$ as:

$$
G_{\mathcal{A},PKE}^{\text{IND-CPA}}(\lambda) : \\
\langle pk, sk \rangle \leftarrow PKE.KGen(1^\lambda); \\
b \leftarrow \{0, 1\};
$$
\[
\begin{align*}
 b' & \leftarrow A_{\text{Chal}}(\cdot) (pk, 1^\lambda); \\
 \text{output} \quad b' &= b \\
 \text{Chal}(m_0, m_1) : \\
 c^* & \leftarrow \text{PKE.Enc}(pk, m_b); \\
 \text{output} \quad c^*
\end{align*}
\]

We say that PKE is IND-CPA secure if for all PPT adversaries, \(\Pr \left[G_{A, \text{PKE}}^{\text{IND-CPA}}(\lambda) = 1 \right] - 1/2 \) is negligible in \(\lambda \).

In both the fs-IND-CPA (Figure 2) and IND-CPA games, the adversary guesses which message (\(m_0 \) or \(m_1 \)) corresponds to the challenge ciphertext \(c^* \). The major differences are, in the fs-IND-CPA game, the adversary also has a blockchain access, an oracle \(\text{HonestDec} \) which captures the information leakage the adversary can observe on the blockchain, and an oracle \(\text{Leak} \) which captures the notion of forward security.

Seiya Nuta received B.S. degree from University of Tsukuba in 2018 and M.S. degree from University of Tsukuba in 2020. Currently he is developing and researching edge computing in a real-world content delivery network. His research interests include cryptography and operating systems.

Jacob C. N. Schuldt obtained a B.Sc. degree and a M.Sc. degree (cand.scient) from The University of Copenhagen, and a Ph.D. degree from The University of Tokyo. He is currently a senior research scientist in the Advanced Cryptosystems Research Group, National Institute of Advanced Industrial Science and Technology (AIST), Japan. Before joining AIST, he held postdoctoral research positions at AIST and Royal Holloway, University of London.

Takashi Nishide received B.S. degree from the University of Tokyo in 1997, M.S. degree from the University of Southern California in 2003, and Dr.E. degree from the University of Electro-Communications in 2008. From 1997 to 2009, he had worked at Hitachi Software Engineering Co., Ltd., developing security products. From 2009 to 2013, he had been an assistant professor at Kyushu University and from 2013 he is an associate professor at University of Tsukuba. His research is in the areas of cryptography and information security.