Well-Balanced Successive Simple-9 for Inverted Lists Compression

Kun JIANG†,††, Member, Yuexiang YANG††, and Qinghua ZHENG†, Nonmembers

SUMMARY The growth in the amount of information available on the Internet and thousands of user queries per second brings huge challenges to the index update and query processing of search engines. Index compression is partially responsible for the current performance achievements of existing search engines. The selection of the index compression algorithms must weigh three factors, i.e., compression ratio, compression speed and decompression speed. In this paper, we study the well-known Simple-9 compression, in which exist many branch operations, table lookup and data transfer operations when processing each 32-bit machine word. To enhance the compression and decompression performance of Simple-9 algorithm, we propose a successive storage structure and processing metric to compress two successive Simple-9 encoded sequence of integers in a single data processing procedure, thus the name Successive Simple-9 (SSimple-9). In essence, the algorithm shortens the process of branch operations, table lookup and data transfer operations when compressing the integer sequence. More precisely, we initially present the data storage format and mask table of SSimple-9 algorithm. Then, for each mode in the mask table, we design and hard-code the main steps of the compression and decompression processes. Finally, analysis and comparison on the experimental results of the simulation and TREC datasets show the compression and decompression efficiency speedup of the proposed SSimple-9 algorithm.

key words: Successive Simple-9, successive storage, inverted index, decompression performance

1. Introduction

The ever-increasing numbers of web pages and user queries have brought huge challenges to search engines’ storage, update and query performance [1], [2]. Index compression techniques can directly relieve the performance bottleneck; thus, evaluation metrics should include compression ratio, compression speed and decompression speed. The latest word-aligned compression techniques, e.g., Simple-9, FOR and PFOR, upgrade processing efficiency by reducing the number of branch operations [3]–[7]. Given a fixed-length integer list, if more integers can be processed in a single branch (called a data chunk), then the total number of branch operations can be reduced. However, one serious problem in the FOR series techniques (e.g., FOR and PFOR) is that more integers in a data chunk will lead to a larger exception integer, which will increase the bit width in the data chunk and result in a lower compression ratio. To solve this problem, compact compression algorithms such as VSE and AFOR find the optimal bit width by dynamic programming but greatly reduced the compression speed [8], [9]. Although the Simple-9 compression technique shows a much better compression ratio than do many other techniques, there exist a large number of data operations such as branch operations, table lookup and bit shifting that limit further performance improvements. By increasing the number of integers compressed in a single data chunk, our aim is to upgrade the compression and decompression performance of the Simple-9 technique without affecting its high compression ratio.

It is a long and difficult challenge to weigh the choice of appropriate index compression algorithms in both search engine companies and academia. Most of the compression algorithms can show good performance on one evaluation metric. One important factor driving the choice of compression method to adopt in commercial search engines is the balance between different performance indicators [10], [11]. The Group Varint inverted index compression algorithm proposed and adopted by Google can greatly enhance the decompression performance of the Varint algorithm [1]. The algorithm can compress 4 integers as one data chunk and remains byte-aligned at the border of the compressed codeword. This feature can reduce the number of branch operations and upgrade compression and decompression performance. Research shows that the performance of Simple-9 can exceed that of Varint on compression ratio, compression speed and decompression speed. In this paper, we focuses on improving the word-aligned encoder Simple-9 and proposes the Successive Simple-9 (SSimple-9) compression algorithm in accordance with the successive storage metric. The goal is to reduce the number of branch operations by increasing the number of compressed integers in a data chunk. We need to redesign the storage structure of data area and status area and generate the mask tables spanning two adjacent machine words. By reducing the number of branch operations, shifting, and table lookup, we are aiming at further upgrading the compression and decompression speed of Simple-9.

The remainder of this paper is organized as follows. We provide related works on inverted index compressions in Sect. 2. In Sect. 3, we present the integer storage format of SSimple-9 compression. The compression and decompression process of the SSimple-9 compression algorithm is described in Sect. 4. In Sect. 5, the performance of the SSimple-9 compression algorithm is tested explicitly on the
simulation and TREC datasets. Finally, Sect. 6 concludes this paper and presents prospects for future work.

2. Related Works

The inverted index plays an important role in the efficient query processing of search engines with huge web datasets [12]. An inverted list can be viewed as an ordered list of integers, in which each entry of the list corresponds to a different term or word in the collection. The inverted lists can consist of many millions of postings, which could be approximately linear with the size of the collection [13]. To allow faster access and to limit the amount of memory needed, search engines use various compression techniques that can significantly reduce the size of the inverted lists. One common practice when storing an inverted list is to use d-gaps, in which it is possible to decrease the average value that must be compressed, resulting in a sequence of smaller numbers with a higher compression ratio. Instead of naively storing the raw integer in a 32-bit or 64-bit machine word, the main idea of index compression is to store each integer using as few bits as possible. The compressed representation of integer lists is called codeword sequence. Index encoders can be divided into bit-aligned encoders, byte-aligned encoders, and word-aligned encoders.

Bit-aligned encoders assign a distinct codeword to each possible integer, and the compression process consists of representing each integer in the posting list with a predetermined codeword. According to the distribution the integers follow, these methods can be categorized into global and local methods. The distribution of the global method does not depend upon the input sequence, and all of the integers use the same compression model. Examples of this class of encoders are Unary Code, Gamma/Delta Code, and Golomb/Rice Code [13]–[16]. Local methods adjust the parameters of the model according to the change of the input, e.g., Interpolative Code, which leads to a higher compression ratio [17]. The bit-aligned compression algorithms have high compression ratios, but frequent bitwise operations will greatly reduce compression/decompression efficiency.

Byte-aligned encoder codes such as Varint and Group Varint represent an integer in bytes [1], [18]. The basic idea of Varint is to use the low 7 bits of a byte as the data area and the most significant bit as the status bit to indicate whether the byte is the last that stores the data of the integer. Varint compression can have a poor compression ratio because it requires one full byte to encode small integers. However, it requires only a single branching condition for each byte, and the decompression speed is much higher than the bit alignment compression algorithm. The Group Varint encoder compresses a group of integers as a chunk, and the status bits of all of the integers are stored together; the same is true for the data bits. Thus, it has a higher compression/decompression speed than does Varint, indicating that a chunk with a large number of integers can upgrade the compression and decompression procedure.

The most popular compression algorithms are those of the word-aligned encoders; these access and process each codeword that is aligned to a 32/64-bit word boundary. We divide word-aligned encoders into those that employ a fixed number of integer compressions (a list of codewords) and those that employ an unfixed number of integer compressions (single codeword).

The first group encode fixed $32m$ (m is a positive integer) integers in a data chunk with equal-length bit width, ensuring that the last codeword is word-aligned. Typical encoders are FOR, PFOR, VSE, and AFOR [6]–[9]. In FOR compression, the range of values in the chunk is coded first; then, all values in the chunk are written in reference to the range of values [6]. However, if an integer exists that is greater than other values in the chunk (called an exception), then the bit width will be assigned to adjust the exception integer. PFOR is an extension of FOR that is less vulnerable to exceptions, in which the normal integers are encoded with the same bit width but the exceptional integers are stored in a separate location. One serious problem with PFOR is that more integers in a data chunk will lead to a larger exception integer, which will result in a lower compression ratio. To solve this problem, compact compression algorithms such as OptPFD, VSE and AFOR attempt to find the optimal bit width but greatly reduced the compression speed [8], [9], [19]. OptPFD determines the proper bit width by weighing the total normal integers and exceptional integers, leading to the overall optimal compression ratio [19].\ VSE and AFOR both use dynamic programming approaches to partition a fixed-length chunk into several sub-chunks, each with the same bit width [8], [9]. The search for optimal partitioning improves the compression ratio but leads to a serious performance bottleneck of the index update.

The second group of encoders [3]–[5], [20], [21], for example, Simple-X ($X = 9, 16, 8b$), encode as many integers as possible into one single codeword with different padding modes, as shown in Table 1. Although the Simple-X compression technique shows a much better compression ratio than do many other techniques, there exist a large number of data operations such as branch operations, table lookup and bit shifting that limit further performance improvements. By increasing the number of integers compressed in a single data chunk, our aim is to upgrade the compression and decompression performance of

<table>
<thead>
<tr>
<th>Status area (4 bits)</th>
<th>Chunk length (bits)</th>
<th>Bit width (bits)</th>
<th>Wasted bits</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>ηa (0000)</td>
<td>28</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>ηb (0001)</td>
<td>14</td>
<td>2</td>
</tr>
<tr>
<td>2</td>
<td>ηc (0010)</td>
<td>9</td>
<td>3</td>
</tr>
<tr>
<td>3</td>
<td>ηd (0011)</td>
<td>7</td>
<td>4</td>
</tr>
<tr>
<td>4</td>
<td>ηe (0100)</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>5</td>
<td>ηf (0101)</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>6</td>
<td>ηg (0110)</td>
<td>3</td>
<td>9</td>
</tr>
<tr>
<td>7</td>
<td>ηh (0111)</td>
<td>2</td>
<td>14</td>
</tr>
<tr>
<td>8</td>
<td>ηi (1000)</td>
<td>1</td>
<td>28</td>
</tr>
</tbody>
</table>
the Simple-9 technique without affecting its high compression ratio. Research shows that the performance of Simple-9 can exceed that of Varint on compression ratio, compression speed and decompression speed. Inspired by the Group Varint compression, we think it is feasible to combine successive Simple-9 compressed codewords together with new storage format, which can reduce the number of branch operations by increasing the number of compressed integers in a data chunk.

Recently, a series of group compression frameworks were proposed to speed up the processing by taking account of the SIMD instructions [22]–[24]. However, the bit width of all groups remains the same for vectorization; thus, there has been a certain degree of loss in compression ratio.

3. Successive Storage Format

To increase the number of integers that can be compressed together in a chunk by Simple-9 and reduce the number of branch operations in compression and decompression procedure, we propose the SSimple-9 compression. The main idea of the data storage format is designed as follows. We combine integers coded by two adjacent 32-bit Simple-9 coded machine words together; the most significant 8 bits of the first codeword are assigned as the status area. Then, the remaining 24 bits of the first codeword and the second 32-bit machine word are assigned as the data area. The 8-bit status area can represent a total of 16*16=256 cases, and only 9*8=81 cases are used for the padding modes of the SSimple-9 compression.

The 28-bit data area coded by Simple-9 cannot fit into the 24-bit data area in the first 32-bit machine word of SSimple-9. The remaining 4 bits coded by Simple-9 can be stored in the second 32-bit machine word of SSimple-9. Thus, the 24 bits of the first machine word and the most significant 4 bits of the second machine word can be used together to store the 9 padding modes of Simple-9, and the 28 bits of the second machine word can be used to store all of the padding modes of Simple-9. The storage format should be carefully redesigned because the padding modes cross the machine boundaries. Figure 1 shows one padding mode storage of SSimple-9 combined by mode #a and mode #a of Simple-9.

The least significant 5 bits of mode #e are divided into two parts, in which the first 4 bits are stored in the first 32-bit machine word, and the left 1 bit is stored in the second 32-bit machine word. In most padding modes of SSimple-9, some integers are stored across the adjacent 32-bit machine word, and decompression should be done by combining the bit sequence at the end of the first 32-bit machine word and the bit sequence at the front of the second 32-bit machine word. The compression ratio of SSimple-9 remains the same as Simple-9, but the storage format of the two machine words is completely changed. As previously described, the reason that word-aligned compression such as Simple-9 is faster than byte-aligned compressions is that the use of a machine-word process unit leads to fewer branch operations. In the decompression procedure, the integer sequence can be obtained by shifting the data area according to the exact mask table. To reduce the cost of branch operations further, the mask table can be hard-coded for loop-unrolled operations. For SSimple-9 compression, 81 cases of padding modes should be hard-coded for fast integer extraction, as shown in Table 2.

4. Details of Compression and Decompression

4.1 Compression Description

We present the compression details of SS Simple-9 in Algorithm 1 according to the data storage format. The input of the algorithm is an integer array \(d \) with length \(n \), and the

![Table 2](image.png)

Table 2 Pre-computed lookup table representing the 81 different padding modes for the use of the 56 data bits.

Fig. 1 An example shows the integer storage across the word boundary in SS Simple-9.
Algorithm 1 SSimple-9 Compression

Input: a sequence of numbers, \(d \), of \(n \) integers.

1. for \(k \) from 0 to \(n \) do
2. \{ set \(j_1 = 0 \), \(j_2 = 0 \) and \(k' = k \)
3. for \(i \) from 0 to \(\text{modenum}[j_1] \) do
4. \{ if \(2^{\text{bitlength}[i]} <= d[k' + i] \) then
5. \(j_1 + + \)
6. continue
7. \} end if
8. \{ end for
9. \} \(k' = \text{modenum}[j_2] \)
10. for \(i \) from 0 to \(\text{modenum}[j_2] \) do
11. \{ if \(2^{\text{bitlength}[j_2]} <= d[k' + i] \) then
12. \(j_2 + + \)
13. continue
14. \} end if
15. \} end for
16. \(s = M[j_1][j_2] \) //status lookup table
17. switch(\(s \)) do
18. \{ case_s:
19. \{ decode_s(d,k,r)
20. \} break
21. \} \} end switch
22. \} end switch
23. \} end for

Output: a sequence of codewords \(r \).

Algorithm 2 SSimple-9 Decompression

Input: a sequence of codewords \(r \).

1. for \(k \) from 0 to \(n \) do
2. \{ two successive codewords, \(r_1 \) and \(r_2 \) in \(r \)
3. unsigned int \(s = r_1 >>> 24 \)
4. switch(\(s \)) do
5. \{ case_s:
6. \{ decode_s(r_1,r_2,d,k)
7. \} \} end switch
8. \} break
9. \} end for

Output: integer list \(d \) with \(n \) numbers.

By a mask table lookup, and the data area can be stored as the 56-bit sequence 01010101010101010101010101010101, 00100100100100100100100100100100. The actual data can be stored as two 32-bit integers. The first 32-bit integer will combine the status area 00010010 and 24-bit data area 01010101010101010101010101010101. The second 32-bit integer will be the left 32 bits 01010100100100100100100100100101. The final two compressed integers are 307582293, 1380525202. Next, we can also compress the remaining integers into 1141391903, 2080374784. When the hard-coding optimization is used, the total integer sequence needs 2 table lookup and 2 branch instructions.

4.2 Decompression Description

The decompression procedure is depicted in Algorithm 2. The input and output of the algorithm are both integer arrays. For two successive 32-bits codewords, the status bits is first decoded by shifting the most significant 8 bits of the first codeword, which forms the following padding mode (line 3). Then, the corresponding mask can be obtained by hardcoded lookup in the mask table. Finally, the algorithm choose a proper hardcoded decoding function, in which the integers can be extracted by shifting a fixed bit-width defined by the given mask (line 4-10).

Given two codewords {307582293, 1380525202}, the decompression steps are as follows. First, change the first codeword 307582293 to the binary representation 00010010010101010101010101010101. Second, shift left to obtain the 8 status bits 00010010, and the padding mode #bc can be obtained by lookup in the mask table. Next, we change the second codeword 1380525202 to the binary representation 01010010010010
from the smaller bit width to the larger bit width of di
ber of overall branch operations for a given inverted lists
width of each integer while compressing. Thus, the num-
cross-word boundary storage (line 2).

tem the hard-coded shifting and mask
with the same method. With the hard-coding
metric, the decoding procedure of SSimple-9 needs 2 table
lookup and 2 branch instructions overall, compared to 4 ta-
m, we can only conclude that n/28 \leq m \leq n before compressing, but the
number of branch operations of the sequence for SSimple-9
will be surely halved to \(m/2 \). That is to say, the time com-
plexity of branch operations is \(O(n) \) for Simple-9 and surely
\(O(n/2) \) for SSimple-9, which always leads to high perfor-
achievement for SSimple-9.

5. Experimental Results

5.1 Experimental Setup

The experimental evaluation is composed of synthetic data
evaluation and real web TREC data evaluation. The syn-
thetic dataset evaluations are performed on the platform con-
structed in [23], in which the clustering and uniform data
models used are from [5]. The two models generate sets of
distinct sorted integers that can be stored as \(d \)-gaps. In
the uniform model, integers follow a uniform distribution
between the given integer ranges. That is, randomly gen-
erate fixed number of integers within a ranges and convert
them into sequences of \(d \)-gaps. In the clustering model, inte-
gers follow a clustering distribution. The clustering model
is generated from a recursive processing of the uniform model.
Given the integer range array \(A[l, \ldots, r] \), we want to select \(f \)
distinct numbers, where \(f \leq r-l+1 \). If \(f < 10 \), then \(f \) num-
bers in array \(A \) are selected by the uniform model. When
\(f \geq 10 \), array \(A \) is divided into two sub-arrays \(A[l, \ldots, m] \)
and \(A[m+1, \ldots, r] \) (\(m \) is randomly selected). The two sub-
arrays must both provide \(f/2 \) distinct numbers. There are
three different sub-array data selection metrics. The first
one is the selection in \(A[l, \ldots, m] \), which obeys the uniform
model, whereas the selection in \(A[m+1, \ldots, r] \) obeys the clus-
tering model. The second one is the selection in \(A[l, \ldots, m] \),
which obeys the clustering model, whereas the selection in
\(A[m+1, \ldots, r] \) obeys the uniform model. The third one is
the selections in \(A[l, \ldots, m] \) and \(A[m+1, \ldots, r] \); both obey the
clustering model. The choice of the above cases is made
randomly, with a probability of 0.25, 0.25 and 0.5, respec-
tively. The gaps between these integers in the clusterings
are relatively small, which are more compressible than are those
of uniform data. Thus, the clustering data are more likely to
simulate realistic data of web pages.

The real dataset evaluation is based on the Terrier in-
formation retrieval platform [25]. We used inverted lists ob-
tained from two TREC Web test collections, WT2G and
GOV2. The full name of TREC is Text REtrieval Con-
fERENCE, which is co-sponsored by the National Institute
of Standards and Technology (NIST) and the U.S. Depart-
ment of Defense (DOD). Its purpose was to support research
within the information retrieval community by providing the
infrastructure necessary for large-scale evaluation of text re-
trieval methodologies. The WT2G and GOV2 are two gen-

\begin{algorithm}
\caption{code_69\((d,k,r)\)}
\textbf{Input:} integer array \(d \) and start index \(k \).
1: \(r'[0] = (r'[0] << 14) + d[k] \)
2: \(r'[0] = (r'[0] << 10) + (d[k+1] \gg 4) \)
3: \(r'[1] = (r'[1] << 4) + ((d[k+1] << 28) \gg 28) \)
4: \textbf{for} \(i \) from 0 to 3 \textbf{do}
5: \(r'[1] = (r'[1] << 9) + d[k + 2 + i] \)
6: \textbf{end for}
7: \(r'[0] = s << 24(r'[0]) \)
8: \textbf{append} \(r'[0] \) and \(r'[1] \) to \(r \)
\textbf{Output:} a sequence of codewords \(r \).
\end{algorithm}

\begin{algorithm}
\caption{decode_69\((r_1,r_2,d,k)\)}
\textbf{Input:} integer codewords \(r_1, r_2 \) and index \(k \) in \(d \).
1: \(d[k] = (r_1 << 8) \gg 18 \)
2: \(d[k+1] = (r_1 << 22) \gg 18(r_2 >> 27) \)
3: \(d[k+2] = (r_2 << 5) \gg 23 \)
4: \(d[k+3] = (r_2 << 14) \gg 23 \)
5: \(d[k+4] = (r_2 << 23) \gg 23 \)
\textbf{Output:} integer array \(d \).
\end{algorithm}
eral datasets provided by TREC for information retrieval evaluation. The TREC WT2G collection contains approximately 247 thousand documents, with an uncompressed size of 2 GB. The GOV2 collection contains approximately 25.2 million documents, with an un-compressed size of 426 GB. For the query processing evaluation, we use 10,000 queries randomly selected from the TREC2005 Efficiency Track Queries.

The synthetic data evaluation is used for debugging the compression algorithm, and the real web data evaluation is based on the search engine query processing. Thus, the experimental hardware environment differs; the former is on a personal laptop with a quad-core Intel(R) Core(R) i5-5200U processor running at 2.20 GHz with 8 GB of RAM and 12,288 KB of cache, and the latter is on a dedicated, otherwise idle server with an Intel(R) Xeon(R) E5-2640 processor running at 2.00 GHz with 128 GB of RAM and 20MB of L3 cache. All solutions were implemented in JAVA. In every experiment in which we report running time, the JVM was initially executed a certain number of times. The benchmark for warmup and the numbers are averaged over 3 independent runs when the JVM reached steady-state performance. Because the compression ratio remains unchanged for SSImple-9, the effective criteria we count are compression/decompression speeds.

5.2 Synthetic Data Evaluation

In this section, we use the two models of clustering data and uniform data to verify the validity of the proposed SSImple-9 algorithm. For the two models, we generate integer arrays that simulate docIDs in inverted lists. The integers are selected randomly in the range [0, 2^{29}) for both data models. In the first pass, we generated 2^{10} short arrays containing 2^{15} integers each. (We can also generate arrays with fewer integers, such as 2^{8}.) The average distance between successive integers within an array is thus 2^{29-15} = 2^{14}. We expect the compressed data to use at least 14 bits per int (b/i) for the most sparse integers distributed in the given ranges. In the second pass, we generated only one long array of 2^{25} integers. (We can also generate array with more integers, such as 2^{28}.) In this case, the average distance between successive integers is 2^{29-25} = 2^{4}. We expect the compressed data to use at least 4 b/i for the most sparse integers distributed in the given ranges. We choose compression ratio, compression speed and decompression speed as the criteria. To have a general comparison, we select the commonly used fast decompressive compressions Varint, Group Varint, Simple-9 and OptPFD as the baselines. The experimental results are shown in Tables 3–6. The compression ratio is averaged across the fixed number of integers within an increasing distribution ranges. The compress/decompress speed is measured in millions of integers per second (mi/s). Tables 3–6 shows the great compression and decompression speed improvement of SSImple-9; the best case achieves a speed twice that of Simple-9 because the number of branch operations can be significantly reduced in the 64-bit SSImple-9 compression. We also find that the same algorithm is more compressive in clustering data than it is in uniform data because the gaps between the integers of clustering data are relatively small. Additionally, the same compression algorithm on long arrays is more compressive than that on short arrays because long arrays within a fixed range can have smaller integer gaps. Group Varint achieves the best compression speed because the compression process is relatively simple and can largely avoid branch operations that exist in the Varint compression. In addition, although OptPFD maintains the best decompression speed, its compression speed is extremely slow because the dynamic programming technique is used to calculate the optimal compression in the compression process of OptPFD. This characteristic also illustrates why the index compression algorithm used by most search engines not only considers the optimal decompression speed but also the index construction speed. The proposed SSImple-9 compression can significantly improve both compression and decompression speed without changing the compression ratios of Simple-9. In addition, the performance of Simple-9 is much better than that of Varint. Thus, we can conclude that the SSImple-9 algo-

<table>
<thead>
<tr>
<th>Compressions</th>
<th>Compression ratio (b/i)</th>
<th>Compress speed (mi/s)</th>
<th>Decompress speed (mi/s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Varint</td>
<td>11.6</td>
<td>84.7</td>
<td>197.7</td>
</tr>
<tr>
<td>Group Varint</td>
<td>11.6</td>
<td>250.1</td>
<td>383.5</td>
</tr>
<tr>
<td>OptPFD</td>
<td>9.6</td>
<td>5.2</td>
<td>609.5</td>
</tr>
<tr>
<td>Simple-9</td>
<td>10.9</td>
<td>73.7</td>
<td>284.2</td>
</tr>
<tr>
<td>SSsimple-9</td>
<td>10.9</td>
<td>143.8</td>
<td>494.5</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Compressions</th>
<th>Compression ratio (b/i)</th>
<th>Compress speed (mi/s)</th>
<th>Decompress speed (mi/s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Varint</td>
<td>8.0</td>
<td>164.7</td>
<td>274.3</td>
</tr>
<tr>
<td>Group Varint</td>
<td>8.0</td>
<td>361.0</td>
<td>480.0</td>
</tr>
<tr>
<td>OptPFD</td>
<td>4.5</td>
<td>10.3</td>
<td>863.7</td>
</tr>
<tr>
<td>Simple-9</td>
<td>4.5</td>
<td>111.0</td>
<td>380.3</td>
</tr>
<tr>
<td>SSsimple-9</td>
<td>4.5</td>
<td>197.3</td>
<td>797.0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Compressions</th>
<th>Compression ratio (b/i)</th>
<th>Compress speed (mi/s)</th>
<th>Decompress speed (mi/s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Varint</td>
<td>10.8</td>
<td>84.1</td>
<td>205.7</td>
</tr>
<tr>
<td>Group Varint</td>
<td>10.8</td>
<td>261.7</td>
<td>387.2</td>
</tr>
<tr>
<td>OptPFD</td>
<td>8.3</td>
<td>6.0</td>
<td>684.8</td>
</tr>
<tr>
<td>Simple-9</td>
<td>9.4</td>
<td>81.4</td>
<td>311.2</td>
</tr>
<tr>
<td>SSsimple-9</td>
<td>9.4</td>
<td>122.9</td>
<td>546.2</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Compressions</th>
<th>Compression ratio (b/i)</th>
<th>Compress speed (mi/s)</th>
<th>Decompress speed (mi/s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Varint</td>
<td>8.0</td>
<td>166.0</td>
<td>283.7</td>
</tr>
<tr>
<td>Group Varint</td>
<td>8.0</td>
<td>374.7</td>
<td>496.0</td>
</tr>
<tr>
<td>OptPFD</td>
<td>3.9</td>
<td>12.3</td>
<td>907.0</td>
</tr>
<tr>
<td>Simple-9</td>
<td>4.0</td>
<td>139.3</td>
<td>441.0</td>
</tr>
<tr>
<td>SSsimple-9</td>
<td>4.0</td>
<td>158.7</td>
<td>711.3</td>
</tr>
</tbody>
</table>
Algorithm can greatly improve the performance of index building and query processing of search engines while maintaining a better compression ratio.

5.3 TREC Data Evaluation

In this subsection, we present a realistic web page data evaluation on TREC WT2G and GOV2. The criteria we use here are index size and query processing latency. From the synthetic dataset evaluation, we conclude that the SSimple-9 can be used to speed the processing of index building. However, the inverted indexes are first built with Elias-Gamma compressed and then recompressed to different compression algorithms on the Terrier platform. Thus, we will not present index building performance in this subsection. Our inverted lists include docIDs, term frequencies, field frequencies and term positions. We build docID-sorted inverted index structures with 1024 docIDs per chunk using the Elias-Gamma compression, removing the standard English stopwords, and applying Porter’s English stemmer. Finally, the index is built by the Terrier platform with single-pass in-memory indexing and can be recompressed for different index compression algorithms.

The inverted lists are compressed using the original Elias-Gamma compression if the number of integers can only fit fewer than 28 bits of data area. The average index size of the inverted lists is provided in Table 7. The index size compressed by SSimple-9 is the same as that of Simple-9 but is much better than that of Group Varint. OptPFD achieves a better compression ratio than does Varint, Group Varint, Simple-9 or SSimple-9 because the dynamic programming metric is used to obtain optimal chunk splitting with a different compression bit width. Moreover, the best compression ratio can be achieved by Elias-Gamma with smaller datasets and by OptPFD with larger datasets because it is proper to compress smaller integers with Elias-Gamma and larger integers with OptPFD, which can handle exceptional values. However, our SSimple-9 and the original Simple-9 compressions can achieve an acceptable compression ratio.

Next, compared performance directly in a real searching context, i.e., by answering queries with the above WT2G and GOV2 indexes. We use topics 401-450 and topics 751-800 for querying the above WT2G and GOV2 indexes, respectively. We use disjunctive document-at-a-time as the index traversal technique and BM25 as the ranking function. The inverted lists related to the query terms are loaded into main memory at the beginning of each experiment. Every time we report the query latency, the JVM warm-up is necessary to maintain a steady performance state, and the results are averaged over 5 independent runs. The average query latency results are shown in Table 8. For each corpus, this table shows the query-processing speed measured in milliseconds per query.

As depicted in Table 8, the query processing performance of SSimple-9 is significantly improved compared with that of Simple-9, which is close to the performance of OptPFD. Additionally, the superior performance of Group Varint compared with that of Varint shows the effectiveness of the group compression metric. Because many factors can influence the speed of real web-query processing and decompression performance is only one factor, the results might not be as good as those shown in the synthetic evaluation. However, the performance of SSimple-9 compression is almost the same as that of OptPFD compression. In addition, because Terrier uses 1024 docIDs as a data compression chunk, word-aligned fixed number of integer compressions such as OptPFD need only use a different compression algorithm when the number of integers is less than 128. However, the Simple series of compression should use a different compression algorithm for every 1024 docIDs, which can affect overall performance. Thus, the query processing performance can be enhanced by using an unfixed chunk size for the Simple-9 series compression. In summary, the SSimple-9 compression does not achieve optimal performance on one single criterion. However, it shows well-balanced performance in compression speed, compression ratio and decompression speed.

6. Conclusions

To enhance the compression and decompression speed of Simple-9 compression, resulting in faster query processing performing search engines, we have proposed a novel SSimple-9 compression and designed the storage format and details of the compression/decompression process. In essence, the new compression improves the number of integers that can be compressed in a single data-processing procedure, thus shortening the process of branch operations, table lookup and data transfer operations when compressing the integer sequence. Experimental results on a synthetic dataset show that the compression and decompression procedures of the proposed SSimple-9 algorithm achieve a speed almost 2 times faster than that of Simple-9, and

<table>
<thead>
<tr>
<th>Table 7</th>
<th>The index size of the inverted lists achieved by different compression techniques for the TREC WT2G and GOV2 datasets.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Compressions</td>
<td>WT2G (MB)</td>
</tr>
<tr>
<td>Elias-Gamma</td>
<td>104</td>
</tr>
<tr>
<td>Varint</td>
<td>258</td>
</tr>
<tr>
<td>Group Varint</td>
<td>258</td>
</tr>
<tr>
<td>OptPFD</td>
<td>146</td>
</tr>
<tr>
<td>Simple-9</td>
<td>148</td>
</tr>
<tr>
<td>SSimple-9</td>
<td>148</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Table 8</th>
<th>Average query latency in milliseconds (ms) on TREC WT2G and GOV2 indexes.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Compressions</td>
<td>WT2G (ms)</td>
</tr>
<tr>
<td>Elias-Gamma</td>
<td>35.1</td>
</tr>
<tr>
<td>Varint</td>
<td>29.0</td>
</tr>
<tr>
<td>Group Varint</td>
<td>25.4</td>
</tr>
<tr>
<td>OptPFD</td>
<td>23.2</td>
</tr>
<tr>
<td>Simple-9</td>
<td>25.0</td>
</tr>
<tr>
<td>SSimple-9</td>
<td>23.7</td>
</tr>
</tbody>
</table>
query processing on the realistic TREC dataset shows significant performance gains. And it will show well-balanced performance in compression speed, compression ratio and decompression speed in commercial search engines. We also find that the two variants of Simple-9, i.e., Simple-16 and Simple-8b, can make full use of 4 status bits to present $2^4 = 16$ padding modes, and the successive versions might lead to further performance gains. Thus, future work can focus on enhancing variants of Simple-9, such as Simple-16 to improve compression ratio and Simple-8b to improve compression/decompression performance.

Acknowledgments

This work was supported by the China Postdoctoral Science Foundation (2016M602825).

References

Kun Jiang received his B.S., M.S., and Ph.D. degrees in Computer Science from College of Computer, National University of Defense Technology (NUDT), China, in 2008, 2011, and 2015, respectively. He is now a post-doctoral in the School of the Electronic and Information Engineering, Xi’an Jiaotong University, China. His research interests include information retrieval and data mining.

Yuexiang Yang is a Professor with College of Computer of National University of Defense Technology (NUDT), China. He received his Ph.D. degree in Computer Science from School of Computer of NUDT in 2006. His research interests include information retrieval, network security, architecture design of the Internet, and web service.
Qinghua Zheng is a Professor with School of Electronic & Information Engineering of Xi’an Jiaotong University, China. He is the winner of the National Funds for Distinguished Young Scientists and the Distinguished Professor for Yangtze River Scholar Project, is a candidate for “the New Century National Hundred Thousand-and-Ten Thousand Talents Project” and one of the first batch of leading scientists for the “Ten-Thousand Talents Project” for science and technology innovation. His major research fields include theory and technology of intelligent e-Learning environment, network public opinion and harmful information monitoring, and software reliability evaluation.