A Scalable SDN Architecture for Underwater Networks Security Authentication

Qiuli CHEN1, Ming HE\textsuperscript{1,a1}, Xiang ZHENG1, Fei DAI1, Nonmembers, and Yuntian FENG1, Student Member

SUMMARY
Software-defined networking (SDN) is recognized as the next-generation networking paradigm. The software-defined architecture for underwater acoustic sensor networks (SDUASNs) has become a hot topic. However, the current researches on SDUASNs has still in its infancy, which mainly focuses on network architecture, data transmission and routing. There exists some shortcomings that the scale of the SDUASNs is difficult to expand, and the security maintenance is seldom dabble. Therefore, a scalable software-definition architecture for underwater acoustic sensor networks (SSDUASNs) is introduced in this paper. It realizes an organic combination of the knowledge level, control level, and data level. The new nodes can easily access the network, which could be conducive to large-scale deployment. Then, the basic security authentication mechanism called BSAM is designed based on our architecture. In order to reflect the advantages of flexible and programmable in SSDUASNs, security authentication mechanism with pre-push (SAM-PP) is proposed in the further. In the current UASNs, nodes authentication protocol is inefficient as high consumption and long delay. In addition, it is difficult to adapt to the dynamic environment. The two mechanisms can effectively solve these problems. Compared to some existing schemes, BSAM and SAM-PP can effectively distinguish between legal nodes and malicious nodes, save the storage space of nodes greatly, and improve the efficiency of network operation. Moreover, SAM-PP has a further advantage in reducing the authentication delay.

keywords: software-defined underwater acoustic sensor networks, nodes mobility, identity authentication, Autonomous Underwater Vehicle

1. Introduction

Major requirements are put forward for underwater acoustic sensor networks (UASNs) in monitoring the marine environment, developing the marine resources as well as maintaining the marine rights and interests. At present, UASNs have played an important role in marine hydrological data collection, marine resource survey, seawater pollution monitoring, marine disaster warning, ship auxiliary navigation and military underwater surveillance\textsuperscript{1,2}. UASNs mainly have the following three characteristics: widely covered, distributed management, and dynamic topology evolution. UASNs generally use large-scale heterogeneous sensor nodes for deployment in ocean monitoring environment; With the use of unmanned management, the sensor nodes are clustered. The distributed structure can better cope with a variety of tasks and complex situations; Underwater ocean currents and marine biological movements will affect the location of underwater nodes, resulting in dynamic changes and unstable in the network.

With the development of heterogeneous UASNs, sensors, hubs, anchor nodes, Autonomous Underwater Vehicles(AUVs) and different hardware devices put forward higher requirements for the architecture of UASNs, as well as voice communications, optical communications, radio communication and so on. However, the existing distributed architecture is too rigid. There are many shortcomings in terms of network capacity, transmission performance, security protection and energy efficiency. Therefore, it is urgent to innovate from the network architecture to solve the current challenges. Software-defined network (SDN), as the representative of the next generation of Internet, has been widely used in traditional wired networks. Its separation of forwarding and control, centralized control and flexible programmable features, can significantly improve network resource utilization, simplify network management, reduce operating costs, and promote the network innovation and evolution.

In recent years, a series of wireless sensor networks combined with SDN, such as the Internet of things, vehicular network, were being studied. L. Bertaux et al3 proposed a software-defined framework for WSNs to solve the problem of core component building. De Gante et al4 cited several key issues that need to be addressed by SDN-based WSNs, including OpenFlow applicability, distributed control, state synchronization, and controller security. T. Luo5 used the software-defined framework to achieve intelligent management of WSNs, SDN controller would as a base station. The paper6–8 discussed the key issues of UASNs combined with SDN architecture, such as network architecture, communication link, routing, et al. The researches show that with the rapid development of various types of underwater hardware, bringing SDN into the UASNs has become possible. However, the current software-defined UASNs researches are still in its infancy, as some shortcomings still exist. First, the scalability of these networks is poor. Software-defined UASNs researches mainly introduction SDN architecture into UASNs. It simply assigns the role of controllers, switches and hosts to UASNs, and does not fully consider the complexity and dynamics of the underwater environment, making it difficult to be applied in large-scale UASNs effectively. Second, the network security is insufficient. The current researches...
manly focused on network architecture, data transmission and routing. There is little involvement in dynamic topology management, especially security management. The nodes displacement caused by Ocean current movement, and the nodes energy depletion will both lead to network hole. So new nodes need to be replenished in time for replacement healing. Even the extensibility deployment of the network also involves the joining of new nodes. As the incorporation of illegal nodes can easily destroy the entire network, the legitimacy of the new node is the top priority of network security management. Therefore, this paper studies the extensibility and security of software-definition UASNs in dynamic environment.

The rest of the article is organized as follows. The second part introduces the current researches on software-defined UASNs, expounds the advantages and disadvantages of the present research results and points out the existing problems. The third part presents a scalable software-defined UASNs network architecture. The fourth part focuses on the security authentication of software-defined UASNs, and two security authentication mechanisms, BSAM and SAM-PP, are proposed. The fifth part performs the simulation and comparison experiments between the BSAM, SAM-PP protocol and other nodes access authentication method for comparative analysis. Finally, the full text is summarized.

2. Related Works

At present, the world has regarded the ocean as the main competitive field of military. The coastal countries represented by the United States attach great importance to the application and development of the UASNs. Preventing external intrusion is an important task of the acoustic network. To this end, the maintenance and protection of sensors legitimacy and security has become a hot research.

In order to compensate for defects in existing sensor network architecture, using the advantages of software defines network, Akyildiz et al. [6] proposed the preliminary idea of software-defined networking for underwater (SoftWater). It reprogrammed responsibility of surface fixed receiving station, surface mobile receiving station and ground information center. The data transmission architecture and transmission performance were analyzed in detail. But there no specific experiments carried out. Ruolin Fan [7] set up underwater central network controller for underwater mobile network constituted by AUV. The central network controller provide energy and control information for AUVs. Using this design it was able to do the project of AUV routing. But the central controller was difficult to move once deployed, resulting in edge nodes move overhead. In [8], the new nodes USV (underwater Support Vehicle) as a controller were added. The dynamic software-defined underwater network was designed. It indicated that the acoustic communication with omnidirectional, and optical communication with directivity. Based on the difference between the two communication methods, the control information transmission mode used acoustic communication, and the data transmission mode used the optical communication. At the same time, the performance verification was carried out by the WaterCom test platform. Although it could effectively improve the rigid structure of traditional UASNs, the overall size of the network was small. There was a certain degree of difficulty for widely promoting.

In the case of network dynamic security authentication, SoftWater [6] pointed out the mobility management problem about AUVs, and proposed QoS (Quality of Service) issues that need to be considered for seamless route reconstruction. In view of this clustering structure, Yan [9] proposed a key management scheme for mobile heterogeneous networks. Only the cluster head could be moved in the network. The network used asymmetric key and hash function to realize the authentication of mobile cluster head. It had a high degree of security. But it was difficult to adapt to the underwater dynamic environment. Verma S [10] analyzed the impact of nodes mobility on security issues. It proposed a cluster based key management protocol (CKP), which provided different levels of security protection for different attack models. But it did not discuss the issue of authentication of legitimate nodes moving between different clusters. Zhang [11] broadcasted local key to help mobile nodes to establish a secure channel. The legitimacy of new node joined the network could be confirmed. In [12], the ECC encryption algorithm was introduced. The algorithm used elliptic curve on the mathematical problems to complete the asymmetric encryption. Ying Zhang [13] designed a mobile node deployment control model based on particle swarm optimization algorithm. It used the ECC encryption algorithm to complete the authentication problem of mobile nodes moving in the cluster, or between different clusters. But it required all nodes in the network could be moving. The nodes hardware requirements were higher. Qi Jiang [14] discussed the advantages and disadvantages of different encryption algorithms, and pointed out that ECC encryption algorithm is widely used in UASNs with a lot of advantages, such as high security, short key and easy generation.

The existing research results have begun to focus on the security authentication of dynamic nodes access [15]. However, these methods are not applicable to existing large-scale self-organization networks. There are several disadvantages:

(1) For the clustered network structure, the existing nodes authentication methods almost use asymmetric encryption method, which requires the cluster head to store the global key information. The cluster head nodes need larger storage space.

(2) When a new node joins the network, all the nodes that store the global key information need to update. It takes a long time and the efficient of network is very low.

3. The Scalable Software-Definition Architecture for UASNs

In the traditional IP network, network is becoming more
and more rigid due to the complicated function of the router. This seriously hinders the development of new network technology and improvement of network performance. Therefore, SDN as the representative of the new network architecture hopes to leverage characteristics of centralized, separated data forwarding and control to eliminate the bottleneck of network development.

However, in the study of software-defined UASNs, most of them use limited surface sink as a controller. This raises the problem of weak scalability and difficulty of application effectively in large-scale networks. Therefore, we have designed the scalable software defined architecture for UASNs (SSDUASNs) borrowing the idea of hierarchical, to improve the scalability of the network.

3.1 Architecture Design

An important feature of UASNs is its wide scope of coverage. So, it is unrealistic to implement the security authentication architecture by deploying single control node, which can’t be applied in large-scale UASNs. Considering that UASNs itself has the characteristics of aggregating data from many sensors to surface sink, SSDUASNs partitions the network into three levels: data level, control level, and knowledge level. (Fig. 1) First of all, the common sensors are divided into several clusters according to traditional cluster idea. Each cluster consists of a cluster head node to authenticate the common sensors and collect the data of common sensors. All of these clusters constitute the network data level together which is responsible of data forwarding and security authentication. Then, partition the network into multiple independent control domains. Each control domain is composed of one AUV node as a controller and a number of clusters, which forms a SSDUASNs subnet. The control level of network is composed of AUVs, which mainly realizes the effective control of data forwarding and authentication in data level. Finally, at the top of the network, the surface sink is deployed to store overall information and provide service to the whole network, forming the knowledge level. This level is mainly responsible for the information distribution and decision-making of the whole network. Due to the independence and efficient interaction among three levels we achieve the centralized control of network forwarding and management. The additional benefit of this three level network architecture is the ability to get the utmost of existing vertical data aggregation channels to achieve effective control, without adding additional lateral interactions among different control domains.

3.2 Forwarding and Control

In SSDUASNs, the AUV as the controller can be centralized to obtain the current topology and information of entire control domain, while the surface sink in the knowledge level, can store the topology and information of entire network. Based on local and global information, the controller can manage the network effectively by running various control components, such as routing, load balancing, access control and mobility management. As shown in Fig. 2, each cluster header node is merely responsible for forwarding data from sensors and security authentication for sensors. How to forward and authenticate the required key information are determined by the application components on the AUV controller. The application component running on the AUV can control the whole control domain autonomously. The AUV will initiate service requests to the surface sink, when the other control domain is involved, and make decision according to the service response.

Take routing as an example, the data collected by sensors eventually converge to the surface sink. So all the Routing destinations are surface sink. Considering the physical scope and scale of the network, it is often necessary to transfer to the surface sink through multi-hop. As shown in Fig. 3, Sensor1 sends the collected data to the Cluster1 firstly. Then, AUV1, the controller of the Cluster1, initiates the routing query to the surface sink according to the source and the destination. The surface sink responds to the AUV1
4. Security Authentication Mechanism Based on SSDUASNs

When a new sensor node wants to join the cluster, these authentication mechanisms will run. The two conditions as follows:

1) The position of some nodes occur to offset due to the topological evolution of the network. Then they join the cluster again as the new identity.
 a) Move within a cluster. After a node leaving its cluster due to environment, it returns again and needs to be authenticated by its cluster head. b) Move between clusters. A node belong to the A cluster transform to B cluster due to the topology dynamic evolution. It need to be authenticated by B cluster head node.

2) The new node is added to UASNs.
 a) The New node is deployed underwater for optimizing network topology. b) Illegal nodes invade the network.

In the traditional security authentication mechanism for UASNs, the cluster head node which is composed of the common sensor node needs to complete all the authentication work independently. This greatly increases the overhead of cluster head nodes, which makes the network unable to flexibly deal with the problems of nodes mobility. In SSDUASNs, due to the separation of data forwarding and control, the centralized control level and knowledge level can grasp the global information in real time. It can flexibly control the whole process of security authentication, and effectively reduce the authentication cost of cluster head nodes. In addition, programmable control level can provide convenient means for flexibly dispatching authentication process to improve the efficiency. Therefore, this paper studies the security authentication mechanism based on SSDUASNs.

4.1 Basic Security Authentication Mechanism (BSAM)

Because the nodes are frequently moved by the influence of the ocean currents and other factors in the UASNs, the new cluster header node need to be authenticated to maintain the security of the network when the nodes move from one cluster to the other. However, frequent nodes movements lead to frequent authentication processes. At the same time, because any node may move to different clusters, each cluster header node needs to store a large amount of authentication information, resulting in enormous storage overhead.

As shown in Algorithm 1, when the cluster head finds a new node joined the networking, it queries Public key in the local storage according to the node ID (line 1). If the query result is empty, it indicates that the node is a newly added node, and sends the public key request to the controller (line 2-3). If the query hit in the local storage, it will build the authentication message and sends to the new node (line 4-7). After received the authentication packet from the authentication node, the cluster head will perform analytical verification (line 9-10). If the authentication is successful, it enters the normal communication phase (line 11-12), otherwise, the data transmission is rejected (line 13-14). In this case, the controller will query the required key information from the surface sink when it receives the query request, and then return it to the corresponding cluster head node.

In the above-mentioned safety authentication process, the storage cost of the cluster head is limited to an acceptable stable range. It will not waste a lot of storage space because of the uncertainty of newly added nodes. Compared with the traditional security authentication architecture, Authentication information only need to be stored by the surface sink, and not all cluster head nodes are stored. So the above architecture can be a good solution to the huge problem of storage costs. The larger the network size will be, the more benefit it will achieve. However, a fatal problem is that this architecture requires a roundtrip communication delay from the cluster head to the AUV, then to the AUV to the surface sink without reducing the time spent on the query. It just changes the cluster head local query to sink query. Considering the communication quality problem of the UASNs, this communication delay is much larger than the query delay, which makes it difficult for the security authentication process to be completed in a limited time. Therefore, the authentication process must be further improved in the security authentication architecture. It need to reduce the storage overhead while to reduce the authentication time.

4.2 Security Authentication Mechanism Based on Pre-push (SAM-PP)

The BSAM embodies the SDN centralized control idea, but not take full advantage of SDN’s other features - flexible and programmable. In the SDN, the controller is the global manager. On the one hand it can easily access the entire network of information, on the other hand, it can flexible make decisions according to the entire network information. Therefore, to achieve some simple functions can be consid-
tered in the controller (AUV). Then, the various processes of security authentication can be scheduled more flexible.

Another feature of UASNs is the dynamic topology. On the one hand, the nodes may unwork due to failure or energy depletion. On the other hand, the position of the nodes will be affected by the influence of ocean currents. However, for a cluster head, the newly discovered node may only have the following two kinds: (i) the new node is the newly deployed node; (ii) the new node moves from the other cluster. For (i), The deployer has inserted the authentication information of the node into the surface sink when the node is deployed, and the deployment location is determined. Therefore, when the new node is deployed, the surface sink can push the authentication information to the determined controller in advance. Then the controller push the information to the target cluster head, which completes the query process and the information request process in advance. The security authentication time can be greatly reduced.

For (ii), The original cluster head can perceive the node to lose. The loss node can only move to the adjacent cluster in a finite time. The moving range of the node can be predicted according to the network topology. The main problem at this time is that the original controller can’t push the authentication information to the cluster head node of the other domain, when the loss node moves beyond its original control domain. A viable solution is to add a simple communication protocol to the control level. The authentication information can be carried out between controllers. We named the security authentication process as SAM-PP. It is shown in Algorithm 2.

Algorithm 2 SAM-PP

| Require: Node_ID, Cluster_ID, Local_AUV |
| PK ← pk-request(Node_ID) |
| if PK == NULL then |
| auth_fail(Node_ID) |
| else |
| location_list ← loc_request(Cluster_ID) |
| if location_list == NULL then |
| for all < auv, cluster > in location_list do |
| if auv = Local_AUV then |
| send_to_cluster(Node_ID, PK) |
| else |
| send_to_auv(auv, cluster, PK) |
| end if |
| end if |

The original cluster head of the mobile node reports the event to the controller after discovering the node loss. The controller initiates the authentication information query and the mobile range query to the surface sink according to the node identification and cluster identification(line 1-5). After the controller receives the authentication information and the mobile position prediction information, it is judged whether each possible moving position belongs to the control domain (line 7-8). If it belongs to the control domain, the authentication information is pushed directly to the target cluster head(line 9). Otherwise the controller push the authentication information to the destination controller(line 10-11). The destination controller receives the push information and then pushes it to the corresponding cluster head to enable the push of the authentication information to all possible moving ranges.

The process of network security authentication can be divided into two parts: authentication information query and authentication interaction. The BSAM proposed in this paper will actually change the query process from traditional one-level query to one-level query(local query and remote query). The cluster head nodes cost smaller storage. What’s more, SAM-PP cuts the multi-level query process. It makes the remote query with large time in the authentication process can be completed on the basis of the node movement prediction. Total delay in SAM-PP can be great reduced.

5. Simulation and Performance Analysis

5.1 Performance Analysis

The nature of the network is data transmission. So the evaluation of the network architecture can mainly be considered from the transmission efficiency. This paper mainly takes the effective throughput (goodput) as the measure to analyze.

In UASNs, data is transmitted from the bottom to the surface sink. So the goodput of the network refers to the amount of data received by the surface sink in the unit time. Obviously, the goodput is closely related to the network topology. Especially the node that communicates directly with the surface sink, its communication ability directly limits the goodput of the network. Secondly, the transmission efficiency and the transport protocol (routing protocol) also has a strong correlation. A good routing protocol can help improve network throughput. In Sect. 5.2, the detailed simulation experiments and results analysis will be provided.

In view of the shortcomings of the traditional security authentication mechanism, this paper mainly hopes to optimize the storage cost and authentication delay through the security authentication architecture in SSDUASNs. Two security authentication mechanism, BSAM and SAM-PP have been designed to reduce the additional energy loss as much as possible. The network storage overhead(M) consists of the storage overhead of the surface sink(Ms) and the storage overhead of each cluster head(MCH).

\[
 M = M_s + M_{CH} * N_{CH}.
\]

where \(N_{CH}\) is the number of clusters. Without considering cluster overlap, the sum of the storage overhead of all cluster head is equal to the storage cost of the surface sink.

The total delay of the authentication process is the length of time between the start of the authentication and the completion of the authentication. Therefore, in the BSAM, the total delay of the primary authentication is:
$$T = T_A + T_Q + T_C.$$ \hspace{1cm} (2)

where T_A means the authentication interaction delay. T_Q means the authentication information query delay. T_C means the authentication information transmission delay. The authentication interaction is essentially the communication process between the cluster head and the node to be authenticated. So the magnitude of T_A and T_C is equivalent. Therefore, the query delay is the processing delay within the node, which is smaller than the magnitude of the transmission delay. In the SAM-PP, since the authentication process is separated, and the process of remote inquiry and information transmission is completed ahead. The total delay of the authentication is completed in:

$$T = T_A + T'_Q.$$ \hspace{1cm} (3)

Because the cluster head storage capacity is much smaller than the surface sink, so the local query delay(T'_Q) is slightly smaller than the remote query delay(T_Q).

The energy loss during network security authentication mainly includes three parts: energy consumption(E_{pt}), storage energy consumption(E_m) and communication energy consumption(E_{com}).

$$E = E_{pt} + E_{com} + E_m.$$ \hspace{1cm} (4)

For cluster head nodes with limited capacity, BSAM and SAM-PP can effectively reduce the storage energy consumption of each cluster head. But they need to spend some communication energy consumption. Experiments show that in the two safety authentication mechanism, the increase in energy consumption in the proportion of 5% - 10% of the entire process of authentication. This energy cost is acceptable relative to its benefits in terms of storage and authentication latency.

5.2 Simulation Experiments

In order to verify the validity of the architecture (SSDUASNs) and two authentication mechanisms (BSAM and SAM-PP) proposed in this paper, the simulation experiments are carried out in the underwater monitoring area. The common sensors are affected by the current flow model [16]. Their positions will be changed. Table 1 shows the experimental parameters. After the node offset belongs to the cluster, the corresponding authentication mechanism is triggered. At the same time, one hour increments a new node to trigger the corresponding authentication mechanism. Four groups of experiments were performed.

Experiment 1: Comparison of goodput and control packets under different network architectures.

The total size of nodes is set to 100, 200 and 300, respectively. The packet send rate for the node is set to 0.5pkt/s and 1pkt/s. In these cases, the Goodput under three different network architectures is compared. Among them, The SSDUASNs subnet consists of 5 clusters with 10 nodes per cluster. Multiple surface buoys are deployed in SoftWater, but too much buoys on the surface may affect running ships and cause a variety of security risks. Due to the limited control range of buoys, they can be equivalent to one surface sink. In this experiment, the number of controllers is set to 1. The traditional distributed UASNs has no centralized control node. The size of each packet is 200bytes. The routing protocol uses the shortest path protocol, and the goodput and control packets is shown in Fig. 4 and Fig. 5.

As shown in Fig. 4, goodput increases with the rate of packet generation and the expansion of network scale, under three different network architectures. Compared with the other two architectures, the larger the network scale, the more goodput of the SSDUASNs has. What’s more, the gap is becoming more apparent as the scale increases. In traditional UASNs, data can only be forwarded through distributed routing while the convergence speed is slow and dynamic adaptability is poor in the data forwarding process.

Table 1 Experimental parameter settings

<table>
<thead>
<tr>
<th>symbol</th>
<th>description</th>
<th>value</th>
</tr>
</thead>
<tbody>
<tr>
<td>r^s</td>
<td>perceived radius of sensors</td>
<td>60m</td>
</tr>
<tr>
<td>r^c</td>
<td>communication radius of sensors</td>
<td>40m</td>
</tr>
<tr>
<td>V_r</td>
<td>underwater sound propagation speed</td>
<td>1500m/s</td>
</tr>
<tr>
<td>r'_A</td>
<td>perceived radius of AUVs</td>
<td>150m</td>
</tr>
<tr>
<td>r'_c</td>
<td>communication radius of AUVs</td>
<td>150m</td>
</tr>
<tr>
<td>v</td>
<td>movement speed of AUVs</td>
<td>3m/s</td>
</tr>
<tr>
<td>e</td>
<td>initial energy of the sensors</td>
<td>30J</td>
</tr>
<tr>
<td>C</td>
<td>cycle timer of trigger authentication</td>
<td>60min</td>
</tr>
</tbody>
</table>

Fig. 4 Comparison of goodput under different network architectures.

Fig. 5 Comparison of control packets under different network architectures.
As a result, the transmission efficiency will be reduced with the increase of network scale. Figure 5 illustrates the average control packets under three network architectures. As shown in Fig. 5, the average number of control messages under different architectures is similar, and it only depends on the number of nodes. In fact, control messages of distributed UASNs are distributed evenly between nodes, while control messages of centralized SSDUASNs and SoftWater are mainly concentrated on the controller nodes.

However, the SoftWater network is controlled only by surface sink. The control link is too long to lead to efficient control, and single controller is difficult to cope with large-scale requests. As the size of the network increases, its transmission efficiency is much lower than the distributed architecture. From the comparison, we can find that the SSDUASNS architecture proposed in this paper has good scalability and can work well in large-scale underwater networks.

Experiment 2: Comparison of storage overhead under different mechanisms.

Discuss the nodes storage overhead with the size of network changes. Initially, the whole network has 10 nodes to form a cluster, belonging to an AUV. Follow up each time to add a cluster, we discuss the storage overhead changes in network. Adding an AUV after more than five new cluster joined in the networks. The two mechanisms proposed in this paper are compared with the TCM mechanism [13]. The storage overhead of each mechanism is shown in Fig. 6.

As shown in Fig. 6, with the increase of network size, the network storage overhead of TCM mechanism is growing rapidly and the amplitude is very large. The two kinds of authentication mechanism proposed in this paper are relatively gentle in the storage cost, and the overall range is small. This is because each cluster head in the TCM needs to store the public key information of the global nodes. The more the number of nodes, the more the corresponding public key information will need to be stored. Then, the larger storage cost will be. In the two mechanisms proposed in this paper, the public key information of the whole network nodes are stored in the surface sink. The cluster head is only responsible for the public key information of the nodes in its cluster, which is less affected by the network size and has strong expansibility.

Experiment 3: Comparison of authentication latency under different mechanisms.

The experiment 3 contrast are under the size of 200 nodes in UASNs. The average of 10 nodes to form a cluster, and the average of five clusters belong to an AUV. Using Monte Carlo method to run 50 rounds of simulation experiments. The experimental results are shown in Fig. 7.

In Fig. 7, the of BSAM is about 6s. The average delay of TCM and SAM-PP delay are much smaller than BSAM, almost all about 3s. Because in BSAM, the global information is stored in the surface sink. When it needs to query the relevant node of the public key information in the certification process, the cluster head in BSAM requests the information to the AUV firstly, Then, AUV requests the information to the surface sink. The public key information of the relevant node is issued step by step. The communication process is long. A multilayer communication delay is added to local queries compared to TCM. While SAM-PP will push the corresponding public key information after discovering the node lost. This parallel operating mechanism reduces the latency. The cluster head in SAM-PP storage range is much smaller than in TCM. Compared to TCM, the query process in SAM-PP is faster, and has a further advantage in the delay.

Experiment 4: Comparison of authentication energy consumption under different mechanisms.

The experiment 4 contrast are under the size of 200 nodes in UASNs. The average of 10 nodes to form a cluster, and the average of five clusters belong to an AUV.

In Fig. 8, compared with TCM, energy consumption differences in BSAM and SAM-PP are mainly reflected in the communication energy consumption and storage energy consumption. Total energy consumption growth is in less than 10%. The results show that BSAM and SAM-PP use additional communication to reduce storage overhead and delay overhead is feasible. The two mechanisms have little effect on network energy consumption and network life cycle.
Next, we will further study the nodes communication problem, network storage overhead and the information update delay. To guarantee the security access of new nodes, and reduce the influence caused by dynamic evolution of topology is an urgent problem to be solved.

In this paper, a scalable software-definition architecture for UASNs (SSDUASNs) is introduced firstly. Then, two kinds of security authentication mechanism are designed based on SSDUASNs. One is named basic security authentication mechanism (BSAM). In order to reflect the advantages of flexible and programmable in this architecture, security authentication mechanism based on pre-push (SAM-PP) is proposed in the further. The two mechanisms can effectively improve the scalability of the network, improve the efficiency of the node authentication, and reduce the influence caused by dynamic evolution of topology is an urgent problem to be solved.

In this paper, a scalable software-definition architecture for UASNs (SSDUASNs) is introduced firstly. Then, two kinds of security authentication mechanism are designed based on SSDUASNs. One is named basic security authentication mechanism (BSAM). In order to reflect the advantages of flexible and programmable in this architecture, security authentication mechanism based on pre-push (SAM-PP) is proposed in the further. The two mechanisms can guarantee the security access of new nodes, and reduce the network storage overhead and the information update delay. Next, we will further study the nodes communication problem.

Acknowledgments

This work was supported by the Natural Science Foundation of Jiangsu Province under Grant No. BK20150721, BK20161469; China Postdoctoral Science Foundation under Grant No. 2015M582876, 2016T91017; Engineering Research Center of Jiangsu Province under Grant No. BM2014391; Primary Research & Development Plan of Jiangsu Province under Grant No. BE2015728, BE2016904, BE2017616; National Key Research and Development Program No.2016YFC0800606; Key Consulting Project of Chinese Academy of Engineering under Grant No. 2017-XZ-05.

References

Qiuli Chen is a Ph.D. candidate in Army Engineering University of PLA. Her main research interest is underwater acoustic sensor networks.

Ming He received his Ph.D. degrees from PLA Science and Technology University in 2007. Now he is a professor in Army Engineering University of PLA and his main research interests include underwater acoustic sensor networks and Internet of things.

Xiang Zheng is an associate professor in Army Engineering University of PLA and his main research interests is communication and information system.

Fei Dai is a Ph.D. candidate at Army Engineering University of PLA. His research interests include network measurement and monitor, performance evaluation, software defined networking.

Yuntian Feng is a Ph.D. candidate at Army Engineering University of PLA. His main research fields are deep learning and natural language processing.