Constructing Two Completely Independent Spanning Trees in Balanced Hypercubes

Yi-Xian YANG†(a), Kung-Jui PAI†(b), Ruay-Shiung CHANG†(c), Nonmembers, and Jou-Ming CHANG†(d), Member

SUMMARY A set of spanning trees of a graphs G are called completely independent spanning trees (CISTs for short) if for every pair of vertices x, y ∈ V(G), the paths joining x and y in any two trees have neither vertex nor edge in common, except x and y. Constructing CISTs has applications on interconnection networks such as fault-tolerant routing and secure message transmission. In this paper, we investigate the problem of constructing two CISTs in the balanced hypercube BH_n, which is a hypercube-variant network and is superior to hypercube due to having a smaller diameter. As a result, the diameter of CISTs we constructed equals to 9 for BH_2 and 6n – 2 for BH_n when n ≥ 3.

key words: interconnection networks, completely independent spanning trees, balanced hypercubes, diameter

1. Introduction

Interconnection networks are usually modeled as undirected simple graphs G = (V,E), where the vertex set V (= V(G)) and the edge set E (= E(G)) represent the set of processors and the set of communication channels between processors, respectively. A spanning tree T of G is an acyclic connected subgraph of G such that V(T) = V(G). A vertex in a tree is called a leaf if it has degree 1, and an inner-vertex otherwise. Two spanning trees T_1 and T_2 are edge-disjoint if E(T_1) ∩ E(T_2) = ∅, and are inner-vertex-disjoint if the paths joining any two vertices x and y in both trees have no vertex in common except for x and y. A set of k (≥ 2) spanning trees of G are called completely independent spanning trees (CISTs for short) if they are inner-vertex-disjoint (and are indeed edge-disjoint, see Theorem 1 in Sect. 2).

For interconnection networks, constructing multiple CISTs has diverse applications such as fault-tolerant routing and secure message transmission. Hasunuma [12] showed that determining whether a graph G admits CISTs is NP-complete, even for k = 2. P´eterfalvi [24] showed that, for any k ≥ 2, there exists k-connected graph which does not possess two CISTs. Accordingly, researches investigating sufficient conditions for graphs that admit multiple CISTs, such as degree-based conditions, can be found in [1], [3], [7], [15], [17]. Also, with the help of constructions, it has been confirmed that certain classes of graphs possess two CISTs, e.g., 4-connected maximal planar graphs [13], Cartesian product of any 2-connected graphs [14], 4-regular chordal rings [2], [23], crossed cubes [5], and several hypercube-variant networks [21]. In addition, more graphs possessing multiple CISTs can be found in [6], [12], [16], [19], [20], [22].

In this paper, we investigate the problem of constructing two CISTs in balanced hypercubes (defined later in Sect. 2), which were first proposed by Huang and Wu [18]. The balanced hypercube is also a hypercube-variant network and is superior to hypercube due to having a smaller diameter. Basic properties of balanced hypercubes have been acquired, such as bipartite graphs [18], vertex-transitivity [25], and edge-transitivity [26]. A particular property of the balanced hypercube is that each processor has a backup processor that shares the same neighborhood. For more results about the balanced hypercubes, please refer to [4], [8]–[11].

2. Preliminaries

The following two characterizations are important for studying CISTs.

Theorem 1: (Hasunuma [12]) A set of spanning trees T_1, T_2, ..., T_k are CISTS in a graph G = (V,E) iff they are edge-disjoint and for any v ∈ V, there is at most one spanning tree T_i such that v is an inner-vertex.

Theorem 2: (Arak [1]) A graph G = (V,E) admits k CISTs iff there is a partition of V into V_1, V_2, ..., V_k, which is called a k-CIST-partition, such that the following hold:

(i) for i ∈ {1, 2, ..., k}, the subgraph of G induced by V_i, denoted by G[V_i], is connected;

(ii) for distinct i, j ∈ {1, 2, ..., k}, the bipartite graph with bipartition V_i ∪ V_j and edge set {(x,y) ∈ E(G): x ∈ V_i, y ∈ V_j}, denoted by B(V_i, V_j, G), has no tree component.

For constructing two CISTs, the results in [5], [13], [14], [23] are based on Theorem 1, and the results in [2], [21] are based on Theorem 2. In this paper, we apply Theorem 1 to construct two CISTS of balanced hypercubes.

Definition 1: (Huang and Wu [18]) An n-dimensional balanced hypercube BH_n with n ≥ 1 consists of 2^{2n} vertices such that each vertex is labeled by an n-tuple...
(a_0, a_1, \ldots, a_{n-1}), where a_i \in \{0, 1, 2, 3\} for 0 \leq i \leq n - 1, and is adjacent to the following 2n vertices:

(i) (a_0 \pm 1, a_1, \ldots, a_{n-1});
(ii) (a_0 \pm 1, a_1, \ldots, a_{j-1}, a_j + (-1)^{a_0}, a_{j+1}, \ldots, a_{n-1})

for 1 \leq j \leq n - 1,

where arithmetics in the above labels are taken modulo 4.

From the above, we can see that the scalability of a balanced hypercube BH_n is growing at twice the traditional hypercube Q_n. For a labeled graph G, we denoted by G^i the graph obtained from G by appending the symbol i as the rightmost element in the n-tuple of each vertex. Wu and Huang[25] also showed that BH_n can be equivalently defined by the following recursive fashion.

Definition 2: BH_n can be recursively constructed by the following rules:

1. BH_1 is a 4-cycle (i.e., a cycle of length 4) with vertices labeled by (0), (1), and (2), respectively;
2. For n \geq 2, BH_n can be decomposed into four copies of BH_{n-1}, i.e., BH_{n-1}'_i for i \in \{0, 1, 2, 3\}, such that each vertex (a_0, a_1, \ldots, a_{n-2}, i) \in V(BH_{n-1}') is connected with two vertices:
 - (a_0 \pm 1, a_1, \ldots, a_{n-2}, i+1) \in V(BH_{n-1}') if a_0 is even.
 - (a_0 \pm 1, a_1, \ldots, a_{n-2}, i-1) \in V(BH_{n-1}') if a_0 is odd.

If u = (a_0, a_1, \ldots, a_{n-1}), the two adjacent vertices defined as above are called the out-neighbors of u. We denote by N^+(u) (resp. N^-(u)) the out-neighbor taken a_0 + 1 (resp. a_0 - 1) as its first element. Hereafter, for notational convenience, we omit to state "(mod 4)" in each element of an n-tuple and the superscript of a subgraph of the balanced hypercube. In fact, the decomposition of BH_n is more flexible. For vertices with label (a_0, a_1, \ldots, a_{n-1}) in BH_n, a subgraph decomposition can be made by fixing the same symbol at a particular element a_i (i \neq 0) of n-tuples. Figure 1 depicts BH_1, BH_2, and BH_3, where a set of edges drawn in thick lines in BH_3 indicates a subgraph isomorphic to BH_2 and vertices in the subgraph are with a_1 = 0.

Similarly, every hypercube-variant network possesses a recursive structure. For instance, denote by G_n and G_n^j for i \in \{0, 1\} the n-dimensional cube and the (n - 1)-dimensional cube with adding a symbol i at the highest position of the label for each vertex, respectively. Then G_n can be composed from G_{n-1}^0 and G_{n-1}^1 by adding appropriate edges in 2^{n-1} disjoint pairs of vertices between G_{n-1}^0 and G_{n-1}^1 (i.e., a perfect matching). Hence, Pai and Chang[21] proposed a unified approach to recursively construct two CISTs in several hypercube-variant networks, including hypercubes, locally twisted cubes, crossed cubes, parity cubes, and Möbius cubes. This unified approach is based on the following theorem.

Theorem 3: [21] For n \geq 5 and i \in \{0, 1\}, let T_j^0 and T_j^1 be two CISTs of G_{n-1}^i. Then, two CISTs of G_n, say 1 for j \in \{1, 2\}, can be constructed from T_j^0 and T_j^1 by adding an edge (u_j, v_j) \in E(G_n) to connect two inner-vertices u_j \in V(T_j^0) and v_j \in V(T_j^1).

In the above theorem, the two vertices u_j and v_j are called the port vertices of T_j^0 and T_j^1, respectively. The edge (u_j, v_j) is called the bridge of the construction.

3. Main Results

In this section, we present our constructing scheme of two CISTs in BH_n for n \geq 2. For a graph G, the diameter of G, denoted by diam(G), is the greatest distance between any
pair of vertices in \(G \). The center of \(G \) is defined to be the set of vertices which minimize the maximal distance from other vertices in \(G \). A well-known result is that the center of a tree \(T \) consists of either a singleton if \(\text{diam}(T) \) is even or two adjacent vertices otherwise.

Firstly, the two desired spanning trees of \(BH_2 \) are shown in Fig. 2. It is easy to check that \(T_1 \) and \(T_2 \) are edge-disjoint, and every vertex of \(BH_2 \) is a leaf either in \(T_1 \) or \(T_2 \). Thus, by Theorem 1, the two spanning trees are indeed CISTs of \(BH_2 \). Also, it is clear that \(\text{diam}(T_1) = \text{diam}(T_2) = 9 \), and \(\{(1,2),(2,1)\} \) and \(\{(0,3),(3,0)\} \) are the centers of \(T_1 \) and \(T_2 \), respectively. Therefore, we have the following lemma.

Lemma 4: \(BH_2 \) admits two CISTs with diameter 9.

In what follows, we consider the construction of two CISTs in the high-dimensional \(BH_n \) for \(n \geq 3 \) by recursion. Before this, we state a property similar to Theorem 3 and it is useful for constructing CISTs in \(BH_n \). This property can be proved by using the same proof technique of Theorem 3.

Corollary 5: For \(n \geq 3 \) and \(i \in \{0,1,2,3\} \), let \(T_i^1 \) and \(T_i^2 \) be two CISTs of \(BH_n \). Then, two CISTs of \(BH_n \), say \(T_j^i \) for \(j \in \{1,2\} \), can be constructed from \(T_i^0 \) and \(T_i^1 \) by adding three edges fulfilled one of the following conditions:

(i) For \(i \in \{0,1,2\} \), add \((u,v) \in E(BH_n) \) to connect two inner-vertices \(u \in V(T_i^0) \) and \(v \in V(T_i^1) \). (ii) For \(i \in \{0,3,2\} \), add \((u,v) \in E(BH_n) \) to connect two inner-vertices \(u \in V(T_i^1) \) and \(v \in V(T_i^0) \).

For instances, we consider \(BH_3 \) and \(BH_4 \) as follows. Note that, in \(BH_2 \), a particular vertex \((1,1) \) is adjacent to the center vertex \((2,1) \) in \(T_1 \), and a particular vertex \((2,0) \) is adjacent to the center vertex \((3,0) \) in \(T_2 \) (see Fig. 2 for vertices surrounded by dashed circles). Then, \(N''(2,0) = (0,1) \) and \(N''((3,0)) = (2,0, i - 1) \) in \(BH_3 \) for \(i \in \{0,1,2,3\} \). So, if we choose the pairs \(\{(2,0),(0,1)\} \) as port vertices to connect two trees \(T_1^0 \) and \(T_2^0 \) for \(i = 0,1,2 \), we obtain a spanning tree \(\hat{T}_1 \) in \(BH_3 \). Similarly, if we choose the pairs \(\{(3,0),(2,0, i - 1)\} \) as port vertices to connect two trees \(T_1^1 \) and \(T_2^1 \) for \(i = 0,1,2 \), then we obtain a spanning tree \(\hat{T}_2 \) in \(BH_3 \). See Fig. 3 for a schematic illustration, where each thick line indicates a bridge for connecting two port vertices. Also, a line segment indicates a path in the tree and a number attached to a line represents the length of the path. By Corollary 5, \(\hat{T}_1 \) and \(\hat{T}_2 \) are two CISTs of \(BH_3 \) and \(\text{diam}(\hat{T}_1) = \text{diam}(\hat{T}_2) = 16 \). Moreover, we observe that \((1,1,2) \) is the unique center vertex of \(\hat{T}_1 \) and it is adjacent to a particular vertex \((2,1,2) \). Also, \((2,0,2) \) is the unique center vertex of \(\hat{T}_2 \) and it is adjacent to a particular vertex \((3,2,0) \) (see Fig. 3 for vertices surrounded by dashed circles).

Then, using a similar approach, we can construct two CISTs, say \(\hat{T}_1 \) and \(\hat{T}_2 \), of \(BH_4 \) if we choose the pairs \(\{(1,1,2, i),(2,1,2, i - 1)\} \) as port vertices to connect two trees \(\hat{T}_1^0 \) and \(\hat{T}_2^0 \) for \(i = 0,3,2 \) and the pairs \(\{(2,0,2, i),(3,0,2, i + 1)\} \) as port vertices to connect two trees \(\hat{T}_1^1 \) and \(\hat{T}_2^1 \) for \(i = 0,1,2 \). See Fig. 4 for a schematic illustration.

In general, suppose that \(T_1 \) and \(T_2 \) are two constructed CISTs of \(BH_{n-1} \). For \(i \in \{0,1,2,3\} \), let \(T_i^1 \) and \(T_i^2 \) be two corresponding CISTs of \(BH_{n-1} \). If \(n \geq 3 \) is odd, we choose three pairs \(\{u,N(u)\} \) as port vertices to connect \(T_i^0 \) and \(T_i^{i+1} \) for \(i = 0,1,2 \), where \(u \in \{2,1,2,2,\ldots,2,i\} \) and \(N(u) = (1,1,2,2,\ldots,2,i+1) \). Then, we obtain a spanning tree \(\hat{T}_1 \) with the unique center vertex \((1,1,2,2,\ldots,2,i) \).

Also, we choose pairs \(\{u,N(u)\} \) as port vertices to connect...
T_i^2 and T_i^{2-1} for $i = 0, 3, 2$, where $u = (3, 0, 2, 2, \ldots, 2, i)$ and $N^-(u) = (2, 0, 2, 2, \ldots, i, i - 1)$. Then, we obtain a spanning tree \hat{T}_2 with the unique center vertex $(2, 0, 2, 2, \ldots, 2, 2)$.

On the other hand, if $n \geq 4$ is even, we choose three pairs $(u, N^+(u))$ as port vertices to connect T_i^2 and T_i^{2+1} for $i = 0, 3, 2$, where $u = (1, 1, 2, 2, \ldots, 2, i)$ and $N^+(u) = (2, 1, 2, 2, \ldots, 2, i - 1)$. Then, we obtain a spanning tree \hat{T}_1 with the unique center vertex $(2, 1, 2, 2, \ldots, 2, 2)$. Also, we choose pairs $(u, N^+(u))$ as port vertices to connect T_i^2 and T_i^{2+1} for $i = 0, 1, 2$, where $u = (2, 0, 2, 2, \ldots, 2, i)$ and $N^+(u) = (3, 0, 2, 2, \ldots, 2, i + 1)$. Then, we obtain a spanning tree \hat{T}_2 with the unique center vertex $(3, 0, 2, 2, \ldots, 2, 2)$.

By Corollary 5, the two spanning trees \hat{T}_1 and \hat{T}_2 are CISTS of BH_n. According to the recursive construction, it follows that
\[
\text{diam}(\hat{T}_i) = 2 \left(\left\lceil \frac{\text{diam}(T_i)}{2} \right\rceil + 3 \right) \text{ for } i \in \{1, 2\}.
\]

Then, solving the equation under the base case $\text{diam}(T_i) = 9$ when $n = 2$ (see Lemma 4), we acquire the following result.

Theorem 6: For $n \geq 3$, the balanced hypercube BH_n admits two CISTS with diameter $6n - 2$.

Acknowledgments

This research was partially supported by MOST grants 107-2221-E-131-001 (Kung-Jui Pai), 107-2221-E-141-002 (Ruay-Shiuang Chang) and 107-2221-E-141-001-MY3 (Jou-Ming Chang), from the Ministry of Science and Technology, Taiwan.

References