A Note on Enumeration of 3-Edge-Connected Spanning Subgraphs in Plane Graphs

Yasuko MATSUI†, Member and Kenta OZEKI††, Nonmember

SUMMARY This paper deals with the problem of enumerating 3-edge-connected spanning subgraphs of an input plane graph. In 2018, Yamanaka et al. proposed two enumeration algorithms for such a problem. Their algorithm generates each 2-edge-connected spanning subgraph of a given plane graph with \(n \) vertices in \(O(n^2) \) time, and another one generates each 3-edge-connected spanning subgraph of a general graph with \(m \) edges in \(O(mT) \) time, where \(T \) is the running time to check the \(k \)-edge connectivity of a graph. This paper focuses on the case of the 3-edge-connectivity in a plane graph. We give an algorithm which generates each 3-edge-connected spanning subgraph of the input plane graph in \(O(n^2) \) time. This time complexity is the same as the algorithm by Yamanaka et al., but our algorithm is simpler than theirs.

key words: enumeration, algorithm, spanning subgraph, edge-connectivity

1. Introduction

In this paper, we present a simple algorithm that enumerates all the 3-edge-connected spanning subgraphs of a given plane graph with \(n \) vertices in \(O(n^2) \) time, using reverse search method by Avis and Fukuda [1]. For this problem, Yamanaka et al. proposed the algorithm that enumerates all the \(k \)-edge-connected spanning subgraphs of a given general graph with \(n \) vertices and \(m \) edges. Their algorithm generates each \(k \)-edge-connected spanning subgraph of the input graph in \(O(mT) \) time, where \(T \) is the running time to check the \(k \)-edge-connectivity of a graph. From the result by Gabow [3], it can be observed that \(T = O(m + k^2 n \log(n/k)) \) holds. So, their algorithm enumerates all the \(k \)-edge-connected spanning subgraphs in an input plane graph and requires \(O(n^2 \log n) \) time per each. Note that \(m \leq 3n - 6 \) holds for a plane graph. On the other hand, this paper also gives an algorithm that generates each \(k \)-edge-connected spanning subgraph of an input plane graph in \(O(n^2) \) time by using an algorithm which can check \(3 \)-edge-connectivity in \(O(n) \) time for a given plane graph. In 2017, for a given graph, Mehlhorn et al. already proposed an algorithm for checking \(3 \)-edge-connectivity in \(O(n) \) time [5]. So, both algorithms require the same time complexity. However, ours is very simple and short. It has an advantage.

2. Preliminary

Let \(G = (V(G), E(G)) \) be an undirected unweighted graph with vertex set \(V(G) \) and edge set \(E(G) \). We always denote \(|V(G)| \) and \(|E(G)| \) by \(n \) and \(m \), respectively. A graph \(G \) is simple if \(G \) has no multi-edges and no self-loop. Throughout this paper, we suppose that graphs are simple unless otherwise noted. An edge set \(S \) of a graph \(G \) is called a bond if \(G - S \) is not connected, while \(G - S' \) is connected for any proper subset \(S' \) of \(S \). A graph \(G \) is \(k \)-edge-connected if \(G \) does not have any bond of size at most \(k - 1 \). Let us remark that, for \(k = 1 \), a 1-edge-connected graph is just a connected graph. A graph \(H = (V(H), E(H)) \) is a subgraph of \(G \) if \(V(H) \subseteq V(G) \) and \(E(H) \subseteq E(G) \) hold. A subgraph \(H = (V(H), E(H)) \) of \(G \) is spanning if \(V(H) = V(G) \).

Throughout this paper, we assume that the edges in \(E(G) \) are labeled such as \(E(G) = \{e_1, e_2, \ldots, e_m\} \). Let \(e_i \) and \(e_j \), \(i < j \), be two edges in \(G \). We say that \(e_i \) is smaller than \(e_j \), denoted by \(e_i < e_j \). Let \(e \) be an edge of \(G \). For a subgraph \(H \) of \(G \), we denote by \(H - e \) the graph obtained from \(H \) by removing \(e \). We denote by \(H + e \) the graph obtained from \(H \) by inserting \(e \). A graph is planar if it can be embedded in the plane so that no two edges intersect geometrically except at a vertex to which they are both incident. A plane graph is a planar graph with a fixed planar embedding. A plane graph \(G \) divides the plane into connected regions called faces. We put a vertex \(f^* \) in each face \(f \) of \(G \), and for each edge \(e \) in \(G \), we connect by the edge \(e^* \) the vertices \(f^* \) and \(g^* \) in \(G^* \), where \(f \) and \(g \) are the faces of \(G \) whose contours share the edge \(e \). Then we call the obtained graph the dual graph of \(G \), and is denoted by \(G^* \). For an edge set \(S \) in \(G \), let \(S^* = \{e^*|e \in S\} \). A cycle is a circuit in which the only repeated vertices are the first and last vertices. The length of a cycle is the number of edges involved. The following is a well-known lemma, which will be used for our algorithm.

Lemma 1: An edge set \(S \) in a connected plane graph \(G \) is bond if and only if \(S^* \) forms a cycle in \(G^* \).

3. Enumerating All \(k \)-Edge-Connected Spanning Subgraphs in Graphs

In this section, we introduce results by Yamanaka et al. [7], [8]. They proposed the algorithm for generating all \(k \)-edge-connected spanning subgraphs. The algorithm based on the reverse search [1] traverses the tree structure in depth-first...
search manner.

Let G be a k-edge-connected graph with $k \geq 1$. We denote by $S_k(G)$ the set of k-edge-connected spanning subgraphs of G. Note that G itself is in $S_k(G)$. To see a tree structure, we define the parent for each k-edge-connected spanning subgraph of G except G. Let H be a k-edge-connected spanning subgraph in $S_k(G) \setminus \{G\}$. Let $sm(H)$ be the smallest edge in $E(G) \setminus E(H)$. Then, we define $par(H) := H + sm(H)$. From the definition, it is easy to observe that $par(H)$ is also k-edge-connected spanning subgraph of G. By repeatedly finding the parents starting from H, we obtain a sequence $H, par(H), par(par(H)), \ldots$ of k-edge-connected spanning subgraphs. We call such a sequence the appending sequence of H. The sequence starts with H and ends with G. In [7] and [8], they proved the following lemma and proposed two algorithms for $k = 2$ and a general case.

Lemma 2: Let $H \neq G$ be a k-edge-connected spanning subgraph of a graph G. Then, the appending sequence of H always ends with G.

Theorem 1: Let G be a plane graph with n vertices. One can generate every 2-edge-connected spanning subgraph of G in $O(n)$ time for each.

Theorem 2: Let G be a graph. One can generate each k-edge-connected spanning subgraph of G in $O(mT)$ time for each, where T is the running time to check whether a graph is k-edge-connected.

From the result by Gabow [3], it can be observed that $T = O(m + k^2n \log(n/k))$ holds.

Here, we focus on the case of $k = 3$. In 2017, Mehlhorn et al. proposed an algorithm for checking 3-edge-connectivity of an input graph [5]. The time complexity of their algorithm is a linear time. Therefore, by using their checking algorithm, the second algorithm enumerates all the 3-edge-connected spanning subgraphs in an input plane graph and requires $O(n^2)$ time per each.

4. Enumerating All 3-Edge-Connected Spanning Subgraphs in Plane Graphs

In this section, we focus on 3-edge-connected spanning subgraphs in plane graphs. For this purpose, as mentioned above, the algorithm obtained by Yamanaka et al.’s one and Mehlhorn et al.’s one generates all 3-edge-connected spanning subgraphs in $O(n^2)$ time per each. Our algorithm also requires the same time complexity per each and bases on Yamanaka et al.’s algorithm whose case is $k = 2$. The key idea is Lemma 1.

To generate all 2-edge-connected subgraphs in a plane graph G, Yamanaka et al. used in the proof of Theorem 1 the dual graph G^* of G. In their algorithm, they check multiple edges in G^*, whose corresponding edges in G cannot be deleted to generate 2-edge-connected subgraphs of G by Lemma 1.

In the case of 3-edge-connected subgraphs, we focus on a cycle of length 3 in the dual graph G^* of G to find those edges that cannot be deleted to keep 3-edge-connectedness.

In the following, we give our main theorem.

Theorem 3: Let G be a plane graph with n vertices. One can generate each 3-edge-connected spanning subgraph of G in $O(n^2)$ time per each.

Proof. Let us estimate the running time required for a subgraph $H \in S_3(G)$ in the family tree. When H is generated from its parent $par(H)$, the dual graph is updated. This takes $O(n)$ time. To generate a child of H, for each edge e in H with $e < sm(H)$, we check 3-edge-connectivity of $H - e$.

Recall that, from Lemma 1, it is sufficient to check cycles whose length is 3 in the dual graph G^* of G. To find such cycles efficiently, we check whether or not two end points of each edge e^* have a common neighbor in G^*, which requires $O(n)$ time for each edge e^* in G^*. If there exists such a vertex, then e^* is contained in a cycle of length 3, and hence we cannot delete the corresponding edge e from G. Thus, this check can be done in $O(n)$ time for each and $O(m)$ time in total. Therefore, our algorithm requires $O(n^2)$ time for each 3-edge-connected spanning subgraph in G, since $m \leq 3n - 6$ holds in a plane graph. Q.E.D.

5. Conclusion

We have proposed the algorithm for enumerating 3-edge-connected spanning subgraphs. Our algorithm enumerates all the 3-edge-connected spanning subgraphs of a given plane graph with n vertices in $O(n^2)$ time for each. On checking 3-edge-connectivity, although it is the same time complexity of the algorithm by Mehlhorn et al. [5], our algorithm is extremely simple, which is also an advantage.

Acknowledgments

This work was supported by JSPS KAKENHI Grant Numbers JP18K03391 and JP20K04973.

References

