IEICE Transactions on Information and Systems
Online ISSN : 1745-1361
Print ISSN : 0916-8532
Regular Section
Spatial-Temporal Aggregated Shuffle Attention for Video Instance Segmentation of Traffic Scene
Chongren ZHAOYinhui ZHANGZifen HEYunnan DENGYing HUANGGuangchen CHEN
Author information
JOURNAL FREE ACCESS

2023 Volume E106.D Issue 2 Pages 240-251

Details
Abstract

Aiming at the problem of spatial focus regions distribution dispersion and dislocation in feature pyramid networks and insufficient feature dependency acquisition in both spatial and channel dimensions, this paper proposes a spatial-temporal aggregated shuffle attention for video instance segmentation (STASA-VIS). First, an mixed subsampling (MS) module to embed activating features from the low-level target area of feature pyramid into the high-level is designed, so as to aggregate spatial information on target area. Taking advantage of the coherent information in video frames, STASA-VIS uses the first ones of every 5 video frames as the key-frames and then propagates the keyframe feature maps of the pyramid layers forward in the time domain, and fuses with the non-keyframe mixed subsampled features to achieve time-domain consistent feature aggregation. Finally, STASA-VIS embeds shuffle attention in the backbone to capture the pixel-level pairwise relationship and dimensional dependencies among the channels and reduce the computation. Experimental results show that the segmentation accuracy of STASA-VIS reaches 41.2%, and the test speed reaches 34FPS, which is better than the state-of-the-art one stage video instance segmentation (VIS) methods in accuracy and achieves real-time segmentation.

Content from these authors
© 2023 The Institute of Electronics, Information and Communication Engineers
Previous article Next article
feedback
Top