Improved Constructions for Query-Efficient Locally Decodable Codes of Subexponential Length

Toshiya ITOH\(^{a}\), Member and Yasuhiro SUZUKI\(^{b}\), Nonmember

SUMMARY A \((k, \delta, \epsilon)\)-locally decodable code \(C : F_q^n \rightarrow F_q^N\) is an error-correcting code that encodes \(\mathbf{x} = (x_1, x_2, \ldots, x_n) \in F_q^n\) to \(C(\mathbf{x}) \in F_q^N\) and has the following property: For any \(y \in F_q^N\) such that \(d(y, C(\mathbf{x})) \leq \delta N\) and each \(1 \leq i \leq n\), the symbol \(x_i\) of \(\mathbf{x}\) can be recovered with probability at least \(1 - \epsilon\) by a randomized decoding algorithm looking at only \(k\) coordinates of \(y\). The efficiency of a \((k, \delta, \epsilon)\)-locally decodable code \(C : F_q^n \rightarrow F_q^N\) is measured by the code length \(N\) and the number \(k\) of queries. For a \(k\)-query locally decodable code \(C : F_q^n \rightarrow F_q^N\), the code length \(N\) was conjectured to be exponential of \(n\), i.e., \(N = \exp(n^\Omega(1))\), however, this was disproved. Yekhanin [In Proc. of STOC, 2007] showed that there exists a 3-query locally decodable code \(C : F_q^n \rightarrow F_q^N\) such that \(N = \exp(n^{1/2})\) assuming that infinitely many Mersenne primes exist. For a 3-query locally decodable code \(C : F_q^n \rightarrow F_q^N\), Efremenko [IEEE Comm Report No.69, 2008] further reduced the code length to \(N = \exp(n^{(\log \log n)/\log n})\), and in general showed that for any integer \(r > 1\), there exists a 2\(^r\)-query locally decodable code \(C : F_q^n \rightarrow F_q^N\) such that \(N = \exp(n^{(\log \log n)/\log n^{1/2^{2r-2}}})\). In this paper, we will present improved constructions for query-efficient locally decodable codes by introducing a technique of “composition of locally decodable codes,” and show that for any integer \(r > 5\), there exists a 9 \(\cdot 2^{r-4}\)-query locally decodable code \(C : F_q^n \rightarrow F_q^N\) such that \(N = \exp(n^{(\log \log n)/\log n^{1/2^{2r-2}}})\).

key words: locally decodable codes, S-matching vectors, S-decoding polynomials, perfectly smooth decoders, private information retrieval

1. **Introduction**

Conventional error-correcting codes \(C : F_q^n \rightarrow F_q^N\) allow one to encode \(\mathbf{x} = (x_1, x_2, \ldots, x_n) \in F_q^n\) to \(C(\mathbf{x}) \in F_q^N\) and have the following property: For any \(y \in F_q^N\) such that \(d(y, C(\mathbf{x})) \leq \delta N\), the original message \(\mathbf{x}\) can be recovered by looking at entire coordinates of \(y\). If one is interested in recovering a single symbol \(x_i\) of \(\mathbf{x}\), more efficient schemes are possible. Such schemes are known as locally decodable codes \(C : F_q^n \rightarrow F_q^N\) that allow recovery of any single symbol \(x_i\) of \(\mathbf{x}\) by looking at only \(k\) randomly chosen coordinates of \(y\) such that \(d(y, C(\mathbf{x})) \leq \delta N\). Informally, a \((k, \delta, \epsilon)\)-locally decodable code \(C : F_q^n \rightarrow F_q^N\) is an error-correcting code that encodes \(\mathbf{x} = (x_1, x_2, \ldots, x_n) \in F_q^n\) to \(C(\mathbf{x}) \in F_q^N\) and has the following property: For any \(y \in F_q^N\) such that \(d(y, C(\mathbf{x})) \leq \delta N\) and each \(1 \leq i \leq n\), the symbol \(x_i\) of \(\mathbf{x}\) can be recovered with probability at least \(1 - \epsilon\) by a randomized decoding algorithm looking at only \(k\) coordinates of \(y\).

1.1 **Known Results**

From theoretical and practical point of view, we are interested in designing a \((k, \delta, \epsilon)\)-locally decodable code \(C : F_q^n \rightarrow F_q^N\) with as shorter \(N\) as possible and as smaller \(k\) as possible. The notion of locally decodable codes was considered in several contexts [2], [17], [19], and Katz and Trevisan [15] were the first to provide a formal definition of locally decodable codes and prove lower bounds for the code length. Gasarch [8] and Goldreich [9] conjectured that for a \(k\)-query locally decodable code \(C : F_q^n \rightarrow F_q^N\) with \(k > 1\), the length \(N\) is unavoidable to be the exponential in \(n\), i.e., \(N = \exp(n^{1/2})\). In Table 1, we summarize the known results on the length for \(k\)-query locally decodable codes.

Yekhanin [24], [25] improved the upper bound for the length of 3-query locally decodable codes to \(N = \exp(n^{1/2(5)}\) and disproved the conjecture [8], [9] on the length of 3-query locally decodable codes, i.e., \(N = \exp(n^{1/1(5)}}\) for infinitely many \(n\)'s if there exist infinitely many Mersenne primes. Very recently, Efremenko [7, Theorem 3.8] improved much further the upper bound for the length of 3-query locally decodable codes to \(N = \exp(n(O(\log \log n)/\log n))^{1/2}\) by introducing the notions of S-matching vectors [7, Definition 3.1] and S-decoding polynomials [7, Definition 3.4] — this reduces the length of 3-query locally decodable codes and removes the unproven assumption that infinitely many Mersenne primes exist. For any \(k > 2\), Efremenko [7, Theorem 3.6] also disproved the conjecture [8], [9] on the length of \(k\)-query locally decodable codes (with no unproven assumption), and showed that for any integer \(r > 1\), there exists a \(2^r\)-query locally decodable code of length \(N = \exp(n^{O((\log \log n)/\log n)^{1/r}}))\). For notational simplicity, we use \(N(r)\) to denote the code length as a function of \(r > 1\), i.e.,

\[
N(r) = \exp\left(n^{O((\log \log n)/\log n)^{1/r}}\right).
\]

1.2 **Main Result**

In this paper, we present improved constructions for a query-efficient locally decodable code, and show that for any \(r > 5\),
there exists a $9 \cdot 2^{-4}$-query locally decodable code $C : \mathbb{F}_q^n \rightarrow \mathbb{F}_q^N$ of length $N(r)$. Our construction of $9 \cdot 2^{-4}$-query locally decodable codes is partially based on the construction due to Efremenko [7]. To reduce the number of queries, we introduce a technique of “composition of locally decodable codes.” In fact, we show that for a k_1-query locally decodable code C_1 of length $N(r_1)$ and a k_2-query locally decodable code C_2 of length $N(r_2)$, there exists a $k_1 k_2$-query locally decodable code C of length $N(r_1 + r_2)$.

In this paper, we find a 3-query locally decodable code C_{IS} of length $N(2)$ by an exhaustive search. By applying our technique of “composition of locally decodable codes” to the 3-query locally decodable code C_6 [7, Theorem 3.8] of length $N(2)$, the 3-query locally decodable code C_{IS} of length $N(2)$, and the 2^{-r^4}-query locally decodable code [7, Theorem 3.6] of length $N(r - 4)$ for any integer $r > 5$, we can construct a $9 \cdot 2^{-4}$-query locally decodable code C of length $N(r)$.

1.3 Application of Locally Decodable Codes

Locally decodable codes have many applications in complexity theory and cryptography (see, e.g., [8], [20]). In particular, locally decodable codes are closely related to designing efficient private information retrieval. Informally, a k-server private information retrieval is a protocol that consists of k databases D_1, D_2, \ldots, D_k with identical data $\vec{x} = (x_1, x_2, \ldots, x_n)$ and a user \mathcal{U}, where each database D_i does not communicate to any other database D_j, and allows the user \mathcal{U} to retrieve x_i of \vec{x}, while any of the k databases D_1, D_2, \ldots, D_k learns nothing about i. Private information retrieval was introduced by Chor et al. [6], and the efficiency of a k-server private information retrieval is measured by its communication complexity $C_k(n)$, i.e., the total amount of bits exchanged between \mathcal{U} and D_1, D_2, \ldots, D_k. Trevisan [20] observed that any k-query locally decodable code with perfectly smooth decoders can be transformed into a k-server private information retrieval. For further details on k-server private information retrieval, see, e.g., [1], [3], [4], [10], [12]–[14], [16], [18], [23].

Table 2 summarizes the known results on the communication complexity $C_k(n)$ for k-server private information retrieval. In particular, Efremenko [7, Theorem 3.6] recently showed that a communication-efficient k-server private information retrieval exists for a specific $k > 1$, i.e., for any $r > 1$, there exists a 2^r-server private information retrieval such that $C_2(n) = n^{O((\log \log n/\log n)^{1/4})}$, and in particular, there exists a 3-server private information retrieval such that $C_3(n) = n^{O((\log \log n/\log n)^{1/2})}$.

<table>
<thead>
<tr>
<th>k-Query</th>
<th>Upper Bound</th>
<th>Lower Bound</th>
</tr>
</thead>
<tbody>
<tr>
<td>2-Query</td>
<td>$\exp(\Omega(n))$</td>
<td>$\exp(\Omega(n))$</td>
</tr>
<tr>
<td>3-Query</td>
<td>$\exp(n^{1/2})$</td>
<td>$\Omega(n^2)$</td>
</tr>
<tr>
<td>k-Query</td>
<td>$\exp(n^{O(\log \log k/\log k)}))$</td>
<td>$\Omega(n^{k+1/(k/2)−1})$</td>
</tr>
</tbody>
</table>

2. Preliminaries

2.1 Locally Decodable Codes

Let \mathbb{F}_q be a finite field of q elements and $d(\vec{x}, \vec{y})$ be the Hamming distance of $\vec{x} = (x_1, x_2, \ldots, x_n) \in \mathbb{F}_q^n$ and $\vec{y} = (y_1, y_2, \ldots, y_n) \in \mathbb{F}_q^n$, i.e., the number of indices such that $x_i \neq y_i$. For any pair of integers $a \leq b$, we use $[a, b]$ to denote the set $\{a, a + 1, \ldots, b\}$, and for any integer $m > 1$, let $Z_m = \{0, 1, \ldots, m - 1\}$ and $Z_m^* = \{z \in Z_m : \gcd(z, m) = 1\}$. We say that a (k, δ, ϵ)-locally decodable code $C : \mathbb{F}_q^n \rightarrow \mathbb{F}_q^N$ is linear if C is linear over \mathbb{F}_q and is nonadaptive if the decoding algorithm D_i makes at most k queries to \vec{y}.

We say that a (k, δ, ϵ)-locally decodable code $C : \mathbb{F}_q^n \rightarrow \mathbb{F}_q^N$ is ϵ-locally decodable if C is linear over \mathbb{F}_q and is nonadaptive if the decoding algorithm D_i makes at most k queries to \vec{y}.

Definition 2.1 [15]: We say that $C : \mathbb{F}_q^n \rightarrow \mathbb{F}_q^N$ is a (δ, ϵ)-locally decodable code if for each $i \in [1, n]$, there exists a randomized algorithm $D_i : \mathbb{F}_q^N \rightarrow \mathbb{F}_q$ such that (1) for any $\vec{x} = (x_1, x_2, \ldots, x_n) \in \mathbb{F}_q^n$ and any $\vec{y} \in \mathbb{F}_q^N$, $\Pr[D_i(\vec{y}) = x_i] \geq 1 - \epsilon$ if $d(C(\vec{x}), \vec{y}) \leq \delta N$, and (2) the algorithm D_i makes at most k queries to \vec{y}.

Definition 2.2 [20]: We say that $C : \mathbb{F}_q^n \rightarrow \mathbb{F}_q^N$ has a perfectly smooth decoder $D = \{D_i\}_{i \in [1, n]}$ if for each $\vec{x} \in \mathbb{F}_q^n$ and each $i \in [1, n]$, $\Pr[D_i(C(\vec{y})) = x_i] = 1$, and each query made by the randomized decoding algorithm D_i is uniformly distributed over $[1, N]$.

Trevisan [20] observed that for a code $C : \mathbb{F}_q^n \rightarrow \mathbb{F}_q^N$, if C has a perfectly smooth decoder and makes at most k queries, then C is a $(\delta, k\delta)$-locally decodable code. In the rest of this paper, we consider only locally decodable codes with perfectly smooth decoders and we use a term “k-query locally decodable codes” instead of a term $(\delta, k\delta)$-locally decodable codes.

2.2 S-Matching Vectors

For any pair of vectors $\vec{x} = (x_1, x_2, \ldots, x_h) \in \mathbb{Z}_m^h$ and $\vec{y} = (y_1, y_2, \ldots, y_h) \in \mathbb{Z}_m^h$, we use $\langle \vec{x}, \vec{y} \rangle_m$ to denote the inner product of \vec{x} and \vec{y} modulo m, i.e.,

$$\langle \vec{x}, \vec{y} \rangle_m \equiv \sum_{j=1}^{h} x_j y_j \pmod{m}.$$

Definition 2.3 [7]: Let $\mathcal{U} = \{\vec{u}_1, \vec{u}_2, \ldots, \vec{u}_t\}$ be a family of vectors, where $\vec{u}_i \in \mathbb{Z}_m^h$, and let $S \subseteq \mathbb{Z}_m^h \setminus \{0\}$. We say that a family $\mathcal{U} = \{\vec{u}_1, \vec{u}_2, \ldots, \vec{u}_t\}$ of vectors is S-matching if it
satisfies the following: (1) for each \(i \in [1, t] \), \((\vec{u}_i, \vec{u}_j)_m = 0 \); (2) for each \(i, j \in [1, t] \) such that \(i \neq j \), \((\vec{u}_i, \vec{u}_j)_m \in S \).

Let \(m = p_1 p_2 \cdots p_r \) be a product of \(r > 1 \) distinct primes. Define \(S_m \subseteq \mathbb{Z}_m \setminus \{0\} \) as follows: For each \(s \in \mathbb{Z}_m \setminus \{0\} \), if either \(s \equiv 0 \pmod{p_i} \) or \(s \equiv 1 \pmod{p_i} \) for each \(i \in [1, r] \), then \(s \in S_m \). We refer to \(S_m \) as the canonical set of the integer \(m = p_1 p_2 \cdots p_r \).

For each integer \(t \in [1, 2^r - 1] \), we use \(\text{bin}(t) = (t_{r-1}, t_{r-2}, \ldots, t_0) \in \{0, 1\}^r \) to denote the binary representation of \(t \), i.e., \(t = t_{r-1} \cdot 2^{r-1} + t_{r-2} \cdot 2^{r-2} + \cdots + t_0 \cdot 2^0 \), and define \(s_i \in [1, m-1] \) to be an integer such that \(s_i \equiv t_{i-1} \pmod{p_i} \) for each \(i \in [1, r] \). From the definition of \(S_m \subseteq \mathbb{Z}_m \setminus \{0\} \), it follows that \(S_m = \{s_1, s_2, \ldots, s_{2^r-1}\} \), where \(s_0 = 0 \) and \(s_{2^r-1} = 1 \).

Lemma 2.1 [7, Corollary 3.3]: Let \(m = p_1 p_2 \cdots p_r \) be a product of \(r > 1 \) distinct primes and let \(S_m \) be the canonical set of \(m \). Then there exists \(c = c(m) > 0 \) such that for any integer \(h > 0 \), there exists a family \(\mathcal{U} = \{\vec{u}_1, \vec{u}_2, \ldots, \vec{u}_t\} \) of \(S_m \)-matching vectors such that \(\vec{u}_i \in [0, 1]^h \subseteq \mathbb{Z}_m^h \) and

\[
t \geq \exp\left(c \frac{(\log h)^r}{(\log \log h)^{r-1}} \right).
\]

Remark 2.1: Let \(m = p_1 p_2 \cdots p_r \) be a product of \(r > 1 \) distinct primes and \(S_m \) be the canonical set of \(m \). As in the proof of [7, Theorem 3.6], it suffices to take

\[
h = n^{O(\log \log n / \log n)^{1/2}}
\]

to define a family \(\mathcal{U} = \{\vec{u}_1, \vec{u}_2, \ldots, \vec{u}_t\} \) of \(S_m \)-matching vectors for any integer \(n > 1 \), where \(\vec{u}_i \in \mathbb{Z}_m^h \).

2.3 \(S \)-Decoding Polynomials

To construct a \((k, \delta, \epsilon)\)-locally decodable code of short length, the following lemma is useful.

Lemma 2.2: For an odd integer \(m > 1 \), let \(t \in [1, m-1] \) be the minimum integer such that \(2^t \equiv 1 \pmod{m} \). Then there exist an element \(\gamma \in \mathbb{F}_2 \) of order \(m \), i.e., \(\gamma^m = 1 \) and \(\gamma^i \neq 1 \) for each \(i \in [1, m-1] \).

The lemma above is a slightly stronger result of [7, Fact 2.4] and can be shown in a way similar to [7, Fact 2.4].

Let \(m = p_1 p_2 \cdots p_r \) be a product of \(r > 1 \) distinct odd primes and \(\gamma \in \mathbb{F}_2 \) be an element given by Lemma 2.2. Efremenko [7] introduced a notion of \(S \)-decoding polynomials, which plays a crucial role to construct a query-efficient locally decodable code.

Definition 2.4 [7, Definition 3.4]: For any \(S \subseteq \mathbb{Z}_m \setminus \{0\} \), we say that \(P(x) \in \mathbb{F}_2[x] \) is an \(S \)-decoding polynomial if it satisfies the following: (1) \(P(\gamma^i) = 0 \) for each \(s \in S \); (2) \(P(\gamma^0) = 1 \).

Efremenko [7] showed that there exists an \(S \)-decoding polynomial with a few monomials.

Lemma 2.3 [7, Claim 3.1]: For a product \(m \) of \(r > 1 \) distinct odd primes and a canonical set \(S_m \) of \(m \), there exists an \(S_m \)-decoding polynomial \(P_m(x) \) over \(\mathbb{F}_2 \) with at most \(|S_m| + 1 \) monomials.

Remark 2.2: The number of monomials of an \(S_m \)-decoding polynomial is closely related to the number of queries of the corresponding locally decodable code. In fact, the number of monomials of an \(S_m \)-decoding polynomial is \(k \) if the number of queries of the corresponding locally decodable code is \(k \).

From the definition of the canonical set \(S_m \) of a product \(m = p_1 p_2 \cdots p_r \) of \(r > 1 \) distinct odd primes, it is obvious that \(|S_m| = 2^r - 1 \). Thus from Lemma 2.3, we immediately have the following lemma:

Lemma 2.4 [7]: Let \(m = p_1 p_2 \cdots p_r \) be a product of \(r > 1 \) distinct odd primes. Then there exists an \(S_m \)-decoding polynomial \(P_m(x) \) with at most \(2^r \) monomials.

3. Known Construction

We describe the construction of \((k, \delta, \epsilon)\)-locally decodable codes given by Efremenko [7].

Let \(m = p_1 p_2 \cdots p_r \) be a product of \(r > 1 \) distinct odd primes, \(\gamma \in \mathbb{F}_2 \) be an element determined by Lemma 2.2 and \(P_m(x) = a_0 + a_1 x^{\gamma^1} + \cdots + a_k x^{\gamma^k} \in \mathbb{F}_2[x] \) be an \(S_m \)-decoding polynomial, where \(S_m \) is the canonical set of \(m \). For an integer \(n > 1 \), we take \(h = n^{O(\log \log n / \log n)^{1/2}} \) as we have mentioned in Remark 2.1, and we construct a family \(\mathcal{U} = \{\vec{u}_1, \vec{u}_2, \ldots, \vec{u}_h\} \) of \(S_m \)-matching vectors, where \(\vec{u}_i \in \mathbb{Z}_m^h \) for each \(i \in [1, n] \).

In the following, we present encoding and decoding procedures by Efremenko [7], which are used in our constructions for query-efficient locally decodable codes.

3.1 Encoding

For each \(i \in [1, n] \), let \(\vec{e}_i \in \mathbb{F}_2^n \) be the \(i \)th unit vector. Define

<table>
<thead>
<tr>
<th>Table 2 Known results on the communication complexity.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Upper Bound</td>
</tr>
<tr>
<td>1-Server</td>
</tr>
<tr>
<td>2-Server</td>
</tr>
<tr>
<td>3-Server</td>
</tr>
<tr>
<td>4-Server</td>
</tr>
<tr>
<td>(k)-Server</td>
</tr>
</tbody>
</table>
a code $C : \mathbb{F}_2^n \to \mathbb{F}_2^N$ as follows: For any message $\mathbf{x} = (x_1, x_2, \ldots, x_n) \in \mathbb{F}_2^n$, let $C(\mathbf{y}) = x_1 C(\mathbf{\bar{e}}_1) + x_2 C(\mathbf{\bar{e}}_2) + \cdots + x_n C(\mathbf{\bar{e}}_n)$, where for each $i \in [1, n]$,

$$C(\mathbf{\bar{e}}_i) = (\gamma^i \mathbf{\bar{e}}_i)_{\mathbb{Z}_m^n}.$$

Thus the code length of C is given by $N = m^h$, i.e., $N = N(r) = \exp(\alpha^6(\log \log n / \log n)^{1-1/r})$.

3.2 Decoding

For each $i \in [1, n]$, a randomized decoding algorithm $D_i : \mathbb{F}_2^n \to \mathbb{F}_2$ is described in Fig. 1.

Lemma 3.1 [7, Lemma 3.5]: The decoding algorithm $D = \{D_i\}_{i \in \{1, n\}}$ is a perfectly smooth decoder.

From Lemmas 2.1 and 2.4, we have the following result:

Theorem 3.1 [7, Theorem 3.6]: For any integer $n > 1$ and any integer $r > 1$, there exists a 2^r-query locally decodable code $C : \mathbb{F}_2^n \to \mathbb{F}_2^N$ of length $N(r)$.

4. Query-Efficient Locally Decodable Codes

In this section, we present constructions for query-efficient locally decodable codes of short length. A key idea of our construction is to generate a $k_1 k_2$-locally decodable code by composing a k_1-locally decodable code and a k_2-locally decodable code (see Theorem 4.1).

4.1 How to Reduce the Number of Queries

By setting $r = 2$ in Theorem 3.1, it is immediate to see that for any integer $n > 1$, there exists a 4-query locally decodable code $C : \mathbb{F}_2^n \to \mathbb{F}_2^N$ of length $N(2)$.

Efremenko [7] found a surprising example: Let $m = 511 = 2^9 - 1 = 7 \cdot 73$ and $S_{511} = \{147, 365, 1\}$. For the integer $m = 511$, determine a finite field \mathbb{F}_2 and an element $\gamma \in \mathbb{F}_2$ of order $m = 511$ by Lemma 2.2. Indeed, the finite field \mathbb{F}_2 is $\mathbb{F}_2 = \mathbb{F}_2[\gamma]/(\gamma^9 + \gamma^4 + 1)$ and $\gamma \in \mathbb{F}_2$ is an element of order 511.

Fact 4.1 [7, Example 3.7]: For the integer $m = 511$, there exists an S_{511}-decoding polynomial $P_{511}(x) = \gamma^{423} \cdot x^{65} + \gamma^{257} \cdot x^{12} + \gamma^{342}$ with 3 monomials, which implies that for any $n > 1$, there exists a 3-query locally decodable code $C_1 : \mathbb{F}_2^n \to \mathbb{F}_2^N$ of length $N = N(2)$.

The result above for the integer $m = 511$ is special. For an odd integer $m = 15 = 2^3 - 1$ is $3 \cdot 5$, let $S_{15} = \{6, 10, 1\}$ and by Lemma 2.2, take the finite field \mathbb{F}_2 to be $\mathbb{F}_2 = \mathbb{F}_2[\gamma]/(\gamma^9 + \gamma + 1)$ and the element $\gamma \in \mathbb{F}_2$, of order 15. By an exhaustive search, we verify that for the integer $m = 15$, there does not exist an S_{15}-decoding polynomial with less than 4 monomials. On the other hand, it is not the case for an odd integer $m = 2047 = 2^{11} - 1 = 23 \cdot 89$. Let $S_{2047} = \{713, 1335, 1\}$ be the canonical set of the integer $m = 2047$ and by Lemma 2.2, take the finite field \mathbb{F}_2 to be $\mathbb{F}_2 = \mathbb{F}_2[\gamma]/(\gamma^{11} + \gamma^2 + 1)$ and the element $\gamma \in \mathbb{F}_2$ of order 2047.

Fact 4.2: For the integer $m = 2047 = 2^{11} - 1 = 23 \cdot 89$, there exists an S_{2047}-decoding polynomial $P_{2047}(x) = \gamma^{1485} \cdot x^{29} + \gamma^{104} \cdot x^{27} + \gamma^{118}$ with 3 monomials, which implies that for any $n > 1$, there exists a 3-query locally decodable code $C_{51} : \mathbb{F}_2^{69} \to \mathbb{F}_2^{51}$, of length $N = N(2)$.

From these observations, we see that it is impossible for every odd integer $m = p_1 p_2 \cdots p_r$, we need to find structural properties of S_m-decoding polynomials to reduce the number of queries to less than 2^r.

4.2 Technical Lemmas

Let $m_1 = p_1 p_2 \cdots p_r$ be a product of $r > 1$ distinct odd primes and $m_2 = q_1 q_2 \cdots q_r$ be a product of $\ell > 1$ distinct odd primes. In the rest of this paper, assume that $\gcd(m_1, m_2) = 1$, and let $m = m_1 m_2$ be a product of $r + \ell > 2$ distinct odd primes. From Lemma 2.2, we know that (1) for the odd integer m_1, there exist a finite field \mathbb{F}_{2^t} with $t_1 \in \{1, m_1 - 1\}$ and an element $\gamma_1 \in \mathbb{F}_{2^t}$, of order m_1; (2) for the odd integer m_2, there exist a finite field \mathbb{F}_{2^t} with $t_2 \in \{1, m_2 - 1\}$ and an element $\gamma_2 \in \mathbb{F}_{2^t}$, of order m_2; (3) for the odd integer $m = m_1 m_2$, there exist a finite field \mathbb{F}_{2^t} with $t \in \{1, m - 1\}$ and an element $\gamma \in \mathbb{F}_{2^t}$, of order m. The following lemmas are crucial for our construction.

Lemma 4.1: For the finite fields \mathbb{F}_{2^t}, \mathbb{F}_{2^s}, and \mathbb{F}_{2^r}, the following holds: (1) \mathbb{F}_{2^t} is a subfield of \mathbb{F}_{2^s}; (2) \mathbb{F}_{2^s} is a subfield of \mathbb{F}_{2^r}; (3) $t = \text{lcm}(t_1, t_2)$.

Proof: For the statement (1), it is easy to see that \mathbb{F}_{2^t} is a subfield of \mathbb{F}_{2^s} iff t is divisible by t_1. From Lemma 2.2, we note that $t_1 \in \{1, m_1 - 1\}$ is the minimum integer with $2^t \equiv 1 \pmod{m_1}$ and $t \in \{1, m - 1\}$ is the minimum integer with $2^t \equiv 1 \pmod{m}$. Assume that t is not divisible by t_1,
i.e., there exist $Q \geq 0$ and $0 < \rho < t_1$ such that $t = QT + \rho$. Since $m = m_1 m_2$, we have that $2^{\ell_1} \equiv 1 \pmod{m_1}$. From the fact that $2^{\ell_1} \equiv 1 \pmod{m_1}$, it follows that

$$1 \equiv 2^{\ell_1} \cdot 2^{Q\ell_2 + \rho} \equiv (2^{\ell_1})^Q \cdot 2^\rho \equiv 2^\rho \pmod{m_1}.$$

This contradicts the fact that $t_1 \in [1, m_1 - 1]$ is the minimum integer with $2^{\ell_1} \equiv 1 \pmod{m_1}$. So t is divisible by t_1, which completes the proof of the statement (1). The proof of the statement (2) is analogous to that of the statement (1). The statement (3) follows from the statements (1) and (2) and the fact that $t \in [1, m - 1]$ is the minimum integer with $2^t \equiv 1 \pmod{m}$.

For the finite field F_{2^t} and the element $\gamma \in F_{2^t}$ determined by Lemma 4.1, the following claims hold:

Claim 4.1: For every $d \in \mathbb{Z}_{m_1}^*$, $\gamma^{d_{m_2}} \in F_{2^t}$ is an element of order m_1.

Proof: Since $2^{t_1} \equiv 1 \pmod{m_1}$, there exists $Q \geq 1$ such that $2^{t_1 - 1} = Qm_1$. From the fact that the order of $\gamma \in F_{2^t}$ is $m = m_1 m_2$, we have that for every $d \in \mathbb{Z}_{m_1}^*$,

$$\left(\gamma^{d_{m_2}}\right)^{2^{t_1-1}} = \left(\gamma^{d_{m_2}}\right)^{2^{Qm_1}} = (\gamma^m)^{Qd} = 1,$$

which implies that $\gamma^{d_{m_2}} \in F_{2^t}$. Assume by contradiction that there exists a $d \in \mathbb{Z}_{m_1}^*$ such that the order of $\gamma^{d_{m_2}}$ is $0 < \ell < m_1$, i.e., $(\gamma^{d_{m_2}})^\ell = \gamma^{d_{m_2}} = 1$. Since the order of $\gamma \in F_{2^t}$ is $m = m_1 m_2$, we have that d_{m_2} is divisible by $m = m_1 m_2$, which implies that d is divisible by m_1. From the fact that $d \in \mathbb{Z}_{m_1}^*$, i.e., $\gcd(d, m_1) = 1$, it follows that ℓ is divisible by m_1, which contradicts the assumption that $0 < \ell < m_1$.

Claim 4.2: In the finite field F_{2^t}, there exist exactly $|\mathbb{Z}_{m_1}^*|$ elements of order m_1.

Proof: For an element $g \in F_{2^t}$ of order $2^{t_1} - 1$, we have that $\alpha = g^{2^{t_1-1}/m_1} \in F_{2^t}$ is an element of order m_1. So the m_1 elements $\alpha^0, \alpha^1, \ldots, \alpha^{m_1 - 1}$ are the set of all elements that satisfies $x^{m_1} = 1$. It is immediate to see that for each $j \in \mathbb{Z}_{m_1}^*$, the order of α^j is $m_1 / \gcd(j, m_1)$. This implies that in the finite field F_{2^t}, there exist exactly $|\mathbb{Z}_{m_1}^*|$ elements of order m_1.

In a way similar to the proofs of Claims 4.1 and 4.2, we can show the following claims for the finite field F_{2^t} and the element $\gamma \in F_{2^t}$ determined by Lemma 2.2.

Claim 4.3: For every $d \in \mathbb{Z}_{m_2}^*$, $\gamma^{d_{m_2}} \in F_{2^t}$ is an element of order m_2.

Claim 4.4: In the finite field F_{2^t}, there exist exactly $|\mathbb{Z}_{m_2}^*|$ elements of order m_2.

From Claims 4.1, 4.2, 4.3, and 4.4, we can immediately show the following lemma:

Lemma 4.2: For the elements $\gamma_1 \in F_{2^t}$, $\gamma_2 \in F_{2^t}$, and $\gamma \in F_{2^t}$, the following holds: (1) there exists $d_1 \in \mathbb{Z}_{m_1}^*$ such that $\gamma_1 = \gamma^{d_{m_2}}$; (2) there exists $d_2 \in \mathbb{Z}_{m_2}^*$ such that $\gamma_2 = \gamma^{d_{m_2}}$.

Proof: The statement (1) immediately follows from Claims 4.1 and 4.2 and the statement (2) immediately follows from Claims 4.3 and 4.4.

Let $S_{m_1} = \{s_1, s_2, \ldots, s_{m_2-1}\}$ be the canonical set of m_1, $S_{m_2} = \{s_1^1, s_2^1, \ldots, s_{m_2-1}^1\}$ be the canonical set of m_2, and $S_m = \{s_1, s_2, \ldots, s_{m_2-1}\}$ be the canonical set of $m = m_1 m_2$. Let $s_0 = s_0^1 = 0$.

Lemma 4.3: For the sets S_{m_1}, S_{m_2}, and S_m, the following holds: For any $s \in S_m \cup \{0\}$, (1) $s \in S_m$ iff there exist $s_1 \in S_{m_1} \cup \{0\}$ and $s_2 \in S_{m_2} \cup \{0\}$ such that $s \equiv s_1 (\text{mod } m_1)$, $s \equiv s_2 (\text{mod } m_2)$, and either $s_1^1 \neq 0$ or $s_2^1 \neq 0$; (2) $s \equiv 0 (\text{mod } m_1)$ and $s \equiv 0 (\text{mod } m_2)$.

Proof: It follows from the definitions of S_{m_1}, S_{m_2}, and S_m and the Chinese Remainder Theorem.

4.3 Composition of Locally Decodable Codes

The following lemma is essential to construct query-efficient locally decodable codes.

Lemma 4.4 (Composition Lemma): For a product m_1 of $r > 1$ distinct odd primes, let $P_{m_1}(x) \in F_{2^t}[x]$ be an S_{m_1}-decoding polynomial with k_1 monomials, and for a product m_2 of $\ell > 1$ distinct odd primes, let $P_{m_2}(x) \in F_{2^t}[x]$ be an S_{m_2}-decoding polynomial with k_2 monomials. If $\gcd(m_1, m_2) = 1$, then we can construct an S_m-decoding polynomial $P_m(x) \in F_{2^t}[x]$ with $k_1 k_2$ monomials from $P_{m_1}(x)$ and $P_{m_2}(x)$.

Proof: For $d_1 \in \mathbb{Z}_{m_1}^*$ given by Lemma 4.2-(1) and $d_2 \in \mathbb{Z}_{m_2}^*$ given by Lemma 4.2-(2), let

$$P_m(x) = P_{m_1}(x^{d_{m_2}}) \cdot P_{m_2}(x^{d_{m_2}}) \in F_{2^t}[x],$$

which is a polynomial with $k = k_1 k_2$ monomials. From Definition 2.4, we have that $P_m(1) = P_{m_1}(1) \cdot P_{m_2}(1) = 1$. From Lemma 4.2, it is immediate that

$$P_m(\gamma) = P_{m_1}(\gamma^{d_{m_2}}) \cdot P_{m_2}(\gamma^{d_{m_2}}) = P_{m_1}(\gamma_1) \cdot P_{m_2}(\gamma_2).$$

From Lemma 4.3, it follows that for any $s \in S_m$, there exist $s_1 \in S_{m_1} \cup \{0\}$ and $s_2 \in S_{m_2} \cup \{0\}$ such that $s \equiv s_1 (\text{mod } m_1)$, $s \equiv s_2 (\text{mod } m_2)$, and either $s_1^1 \neq 0$ or $s_2^1 \neq 0$. Recall that the order of $\gamma_1 \in F_{2^t}$ is m_1; the order of $\gamma_2 \in F_{2^t}$ is m_2; $P_{m_1}(x)$ is an S_{m_1}-decoding polynomial; $P_{m_2}(x)$ is an S_{m_2}-decoding polynomial. Then

$$P_m(\gamma_1) = P_{m_1}(s_1^1) = 0 \quad \sqrt{P_m(\gamma_2) = P_{m_2}(s_2^1) = 0},$$

which implies that $P_m(\gamma^s) = 0$ for any $s \in S_m$.

From Lemma 4.4, we have the following theorem on the constructions of locally decodable codes:
Theorem 4.1: For a product m_1 of $r > 1$ distinct odd primes, let $C_1 : F_{2^{m_1}}^n \to F_{2^{m_1}}^{N_1}$ be a locally decodable code of length $N_1 = N(r)$ that has an S_{m_1}-decoding polynomial $P_{m_1}(x) \in F_{2^{m_1}}[x]$ with k_1 monomials, and for a product m_2 of $t > 1$ distinct odd primes, let $C_2 : F_{2^{m_2}}^n \to F_{2^{m_2}}^{N_2}$ be a locally decodable code of length $N_2 = N(t)$ that has an S_{m_2}-decoding polynomial $P_{m_2}(x) \in F_{2^{m_2}}[x]$ with k_2 monomials.

If $\text{gcd}(m_1, m_2) = 1$, then we can construct a locally decodable code $C : F_{2^n}^n \to F_{2^n}^N$ of length $N = N(r + t)$ that has an S_n-decoding polynomial $P_n(x) \in F_{2^n}[x]$ with $k_1 k_2$ monomials.

Proof: For $m = m_1 m_2$ and $n > 0$ given by (1), define $C : F_{2^n}^n \to F_{2^n}^N$ as follows: For $\vec{x} = (x_1, x_2, \ldots, x_n) \in F_{2^n}$, let $C(\vec{x}) = x_1 C(\vec{e}_1) + x_2 C(\vec{e}_2) + \cdots + x_n C(\vec{e}_n)$, where for each $i \in [1, n], C(\vec{e}_i)$ is given by (2). Thus we have that $N = m^n = N(r + t)$. From Lemma 4.4, let

$$P_n(x) = P_{m_1}(x^d_{m_1}) \cdot P_{m_2}(x^m_{m_2}) = a_0 + a_1 x^1 + \cdots + a_{k-1} x^{k-1}$$

be an S_n-decoding polynomial with $k = k_1 k_2$ monomials. For each $i \in [1, n]$, a randomized decoding algorithm D_i can be defined exactly the same as Fig. 1. For each $i \in [1, n]$, we have that

$$D_i(C(\vec{e}_i)) = D_i \left(\sum_{j=1}^n x_j C(\vec{e}_j) \right) = \sum_{j=1}^n x_j D_i(C(\vec{e}_j)).$$

For each $i \in [1, n]$ and each $j \in [1, n] \setminus \{i\}$, it suffices to show that $\Pr[D_i(C(\vec{e}_i)) = 1] = 1$ and $\Pr[D_j(C(\vec{e}_i)) = 0] = 1$. From (2) and Lemma 4.4, it follows that for k queries $\vec{v}, \vec{v} + b_1 \vec{u}_1, \ldots, \vec{v} + b_{k-1} \vec{u}_1 \in Z_{m_1}^n$,

$$D_i(C(\vec{e}_i)) = \gamma^{-\vec{a}_i}\gamma^{-\vec{b}_i} \cdot \left(a_0 + a_1 \gamma^{\vec{a}_i + \vec{b}_i} \right) + \cdots + a_{k-1} \gamma^{-\vec{a}_i} \gamma^{-\vec{b}_i} \gamma^{b_{k-1} \vec{a}_i}$$

$$= \gamma^{-\vec{a}_i} \gamma^{-\vec{b}_i} \cdot \left(a_0 + a_1 \gamma^{\vec{a}_i + \vec{b}_i} \right) + \cdots + a_{k-1} \gamma^{-\vec{a}_i} \gamma^{-\vec{b}_i} \gamma^{b_{k-1} \vec{a}_i}$$

$$= \gamma^{-\vec{a}_i} \gamma^{-\vec{b}_i} + \gamma^{\vec{a}_i + \vec{b}_i} + \cdots + a_{k-1} \gamma^{-\vec{a}_i} \gamma^{-\vec{b}_i} \gamma^{b_{k-1} \vec{a}_i}$$

$$= \gamma^{-\vec{a}_i} \gamma^{-\vec{b}_i} + \gamma^{\vec{a}_i + \vec{b}_i} + \cdots + a_{k-1} \gamma^{-\vec{a}_i} \gamma^{-\vec{b}_i} \gamma^{b_{k-1} \vec{a}_i}$$

Thus $C : F_{2^n}^n \to F_{2^n}^N$ is a locally decodable code of length $N = N(r + t)$ that has an S_n-decoding polynomial $P_n(x) \in F_{2^n}[x]$ with $k_1 k_2$ monomials.

From Theorem 4.1 and Remark 2.2, we can derive the following corollaries on the constructions of query-efficient locally decodable codes:

Corollary 4.1: For any integer $n > 1$ and any integer $r > 3$, there exists a 3-2$^{-r-2}$-query locally decodable code $C : F_{2^n}^n \to F_{2^n}^N$ of length $N(r)$.

Proof: As given in Fact 4.1, Efremenko [7, Example 3.7] showed that for an odd integer $m_1 = 511 = 29 - 1 = 7 \cdot 73$, there exists a 3-query locally decodable code $C_E : F_{2^{m_1}}^n \to F_{2^{m_1}}^{N_1}$ of length $N_1 = N(2)$ that has an S_{m_1}-decoding polynomial $P_{m_1}(x) \in F_{2^{m_1}}[x]$ with 3 monomials. Efremenko [7, Theorem 3.6] also derived that for a product $m' > T > 1$ distinct odd primes, there exists a 2$^{-T}$-query locally decodable code $C' : F_{2^{m_1}}^n \to F_{2^{m_1}}^{N_1}$ of length $N_1 = N(T)$ that has an $S_{m'}$-decoding polynomial $P_{m'}(x) \in F_{2^{m_1}}[x]$ with 2^T monomials. For any integer $r > 3$, we take a product m_2 of $r - 2$ distinct odd primes such that $\text{gcd}(m_1, m_2) = 1$ and construct a 2$^{-r-2}$-query locally decodable code $C_2 : F_{2^{m_2}}^n \to F_{2^{m_2}}^{N_2}$ of length $N_2 = N(2)$ that has an S_{m_2}-decoding polynomial $P_{m_2}(x)$ with 2$^{-r-2}$ monomials. Applying Theorem 4.1 to the 3-query locally decodable code C_E and the 2$^{-r-2}$-query locally decodable code C_2, we can construct a 3-2$^{-r-2}$-query locally decodable code $C : F_{2^n}^n \to F_{2^n}^N$ of length $N(r)$ that has an S_n-decoding polynomial $P_n(x) \in F_{2^n}[x]$ with 3·2$^{-r-2}$ monomials.

Corollary 4.2: For any integer $n > 1$ and any integer $r > 5$, there exists a 9-2$^{-r-4}$-query locally decodable code $C : F_{2^n}^n \to F_{2^n}^N$ of length $N(r)$.

Proof: For any integer $r > 5$, take a product m_1 of $r - 4$ distinct odd primes such that $\text{gcd}(m_1, 511 \cdot 2047) = 1$. Then there exists a 2$^{-r-4}$-query locally decodable code $C_1 : F_{2^{m_1}}^n \to F_{2^{m_1}}^{N_1}$ of length $N_1 = N(r - 4)$ that has an S_{m_1}-decoding polynomial $P_{m_1}(x)$ with 2$^{-r-4}$ monomials. Applying Theorem 4.1 to the 3-query locally decodable code C_E given in Fact 4.1, the 3-query locally decodable code C_1 given in Fact 4.2, and the 2$^{-r-4}$-query locally decodable code C_2, we can construct a 9-2$^{-r-4}$-query locally decodable code $C : F_{2^n}^n \to F_{2^n}^{N_2}$ of length $N(r)$ that has an S_n-decoding polynomial $P_n(x) \in F_{2^n}[x]$ with 9·2$^{-r-4}$ monomials.

5. Concluding Remarks

In this paper, we have shown the Composition Theorem that
constructs a k_1k_2-query locally decodable code by composing a k_1-query locally decodable code and a k_2-query locally decodable code (see Theorem 4.1). As the application of Theorem 4.1, we have also shown that (Corollary 4.1) for any integer $r > 3$, there exists a $3 \cdot 2^{r-2}$-query locally decodable code $C : F_2^n \rightarrow F_2^n$ of length $N(r)$ and (Corollary 4.2) for any integer $r > 5$, there exists a $9 \cdot 2^{r-4}$-query locally decodable code $C : F_2^n \rightarrow F_2^n$ of length $N(r)$.

For perfectly smooth decoders, we can immediately modify Theorem 4.1 as follows:

Theorem 5.1: For a product m_1 of $r > 1$ distinct odd primes, let $C_1 : F_2^{m_1} \rightarrow F_2^{N_1}$ be a k_1-query locally decodable code of length $N_1 = N(r)$ that has a perfectly smooth decoder D_1 and an S_{m_1}-decoding polynomial $P_{m_1}(x) \in F_2[x]$ with k_1 monomials, and for a product m_2 of $\ell > 1$ distinct odd primes, let $C_2 : F_2^{m_2} \rightarrow F_2^{N_2}$ be a k_2-query locally decodable code of length $N_2 = N(\ell)$ that has a perfectly smooth decoder D_2 and an S_{m_2}-decoding polynomial $P_{m_2}(x) \in F_2[x]$ with k_2 monomials. If $\gcd(m_1, m_2) = 1$, then we can construct a k_1k_2-query locally decodable code $C : F_2^n \rightarrow F_2^n$ of length $N = N(r + \ell)$ that has a perfectly smooth decoder D and an S_n-decoding polynomial $P_n(x) \in F_2[x]$ with k_1k_2 monomials.

From Theorem 5.1 and Corollaries 4.1 and 4.2, we can transform k-query locally decodable codes with perfectly smooth decoders to communication-efficient k-server private information retrieval [20].

Theorem 5.2: For any integer $n > 1$ and any integer $r > 3$, there exists a $3 \cdot 2^{r-2}$-server private information retrieval with the communication complexity

$$C_k(n) = n \Omega((\log \log n / \log n)^{1-\epsilon}),$$

and for any integer $n > 1$ and any integer $r > 5$, there exists a $9 \cdot 2^{r-4}$-server private information retrieval with the communication complexity

$$C_k(n) = n \Omega((\log \log n / \log n)^{1-\epsilon}).$$

At present, we know only 3-query locally decodable codes $C_k : F_2^n \rightarrow F_2^n$ of length $N = N(2)$ for an odd integer $m_1 = 511 = 2^9 - 1 = 7 \cdot 73$ [7, Example 3.7] and $C_{k_{12}} : F_2^{211} \rightarrow F_2^{211}$ of length $N = N(2)$ for an odd integer $m_2 = 2047 = 2^{11} - 1 = 23 \cdot 89$ (see Fact 4.2). Let M_2 be a set of integers, each of which is a product of $r > 1$ distinct odd primes.

From Composition Theorem (see Theorem 4.1), we have that if there exist $m_1, m_2, \ldots, m_t \in M_2$ such that $\gcd(m_i, m_j) = 1$ for each $1 \leq i < j \leq t$ and each $m_t \in M_2$ generates a 3-query locally decodable code $C_i : F_2^{m_i} \rightarrow F_2^{N_i}$ of length $N_i = N(2)$ that has an S_{m_i}-decoding polynomial $P_{m_i}(x) \in F_2[x]$ with 3 monomials, then for the integer $m = m_1m_2 \cdots m_t$, we can construct a 3'-query locally decodable code $C : F_2^n \rightarrow F_2^n$ of length $N = N(2t)$ that has an S_m-decoding polynomial $P_m(x) \in F_2[x]$ with 3 monomials. For integers less than 2048, however, we do know only such integers $m_1 = 511 \in M_2$ and $m_2 = 2047 \in M_2$.

Thus the following problems are both of theoretical interest and of practical importance.

1. Find integers $m \in M_2 \setminus \{511, 2047\}$ that generate a 3'-query locally decodable code $C : F_2^n \rightarrow F_2^n$, i.e., the code C has an S_m-decoding polynomial $P(x) \in F_2[x]$ with 3 monomials.

2. For any integer $r > 3$, find an integer $m \in M_2$ that generates a k-query locally decodable code $C : F_2^n \rightarrow F_2^n$ that has an S_m-decoding polynomial $P(x) \in F_2[x]$ with $k < 3 \cdot 2^{r-2}$ monomials.

3. For any integer $r > 5$, find an integer $m \in M_2$ that generates a k-query locally decodable code $C : F_2^n \rightarrow F_2^n$ that has an S_m-decoding polynomial $P(x) \in F_2[x]$ with $k < 9 \cdot 2^{r-4}$ monomials.

Acknowledgments

The authors would like to thank Osamu Watanabe for his insightful discussions for the earlier version of the paper. The authors also wish to thank anonymous referees for their valuable comments on the paper.

References

Toshiya Itoh was born in Urawa, Japan, in 1959. He received the B.E., M.E., and Dr. Eng. degree in electronic engineering in 1982, 1984, and 1988, respectively from Tokyo Institute of Technology, Tokyo, Japan. From 1985 to 1990, he was an Assistant Professor in the Department of Electrical and Electronic Engineering at Tokyo Institute of Technology, and from 1990 to 1992, he was a Lecturer in the Department of Information Processing at Tokyo Institute of Technology. From 1992 to 2001, he was an Associate Professor in the Department of Information Processing at Tokyo Institute of Technology, and since 2001, he has been a Professor in the Global Scientific Information and Computing Center at Tokyo Institute of Technology. His current interests are discrete algorithms, combinatorics, and complexity theory. Dr. Itoh is a member of the Information Processing Society of Japan, the Association for Computing Machinery, and IAP.

Yasuhiro Suzuki was born in Iwata, Japan, in 1984. He received the B.E. degree in 2009 from Tokyo Institute of Technology, and since 2009, he has been a master course student in the Department of Information Processing at Tokyo Institute of Technology. His current research interests are discrete algorithms, approximation algorithms, and complexity theory.