LETTER

Cryptanalysis of Hwang-Lo-Hsiao-Chu Authenticated Encryption Schemes

Mohamed RASSLAN\(^\dagger\), Member and Amr YOUSSEF\(^\dagger\†\), Nonmember

SUMMARY Tseng et al. proposed two efficient authenticated encryption schemes with message linkages for message flows. Hwang et al. (IEICE Trans. Inf. and Syst., Vol. E89-D, No. 4, April 2006) presented a forgery attack against these two schemes and proposed an improvement that they claim resists such attacks. In this paper, we show that the improved authenticated encryption schemes proposed by Hwang et al. are not secure by presenting another message forgery attack against these improved schemes.

key words: authenticated encryption, authenticity, non-repudiation

1. Introduction

Authenticated encryption schemes are encryption systems which aim to simultaneously achieve both privacy and authenticity of communications. Several authenticated encryption schemes have been proposed in the literature. Nyberg and Rueppel \cite{1}, \cite{2} proposed the first authenticated encryption scheme with message recovery based on the discrete logarithm problem. To improve upon the communication and computation complexities of the original Nyberg and Rueppel scheme, several variants of authenticated encryption schemes have been proposed (e.g., \cite{3}–\cite{11}).

Tseng et al. \cite{12} proposed two efficient authenticated encryption schemes with message linkages. The first scheme is a basic one that requires the recipient (verifier) to wait until she receives all of the signature blocks before she can recover any of the received message blocks. The second scheme is a generalized one that allows the recipient to recover the message blocks upon receiving their corresponding signature blocks. This makes it an attractive choice in many applications such as packet switched networks. Unfortunately, Hwang et al. \cite{13} showed that these authenticated encryption schemes do not fulfill their claimed integrity and authenticity properties. To overcome these security problems, Hwang et al. proposed a modification to these schemes \cite{13}.

In this paper, we show that the modified schemes proposed by Hwang et al. do not overcome the shortcomings of the original Tseng et al. scheme. In particular, we present a message forgery attack that allows the adversary to alter the message flow and pass the integrity check by the verifier.

The remainder of this paper is organized as follows. In the next section, we briefly review the details of Hwang et al.’s schemes that are relevant to our attack. Our proposed attack is described in Sect. 3. Finally we conclude in Sect. 4.

2. Hwang et al. ImprovedAuthenticated Encryption Schemes

In this section, we briefly review the relevant details of the authenticated encryption schemes proposed by Hwang et al. For further details about these schemes, the reader is referred to \cite{13}.

Similar to Tseng et al. \cite{12}, the improved schemes proposed by Hwang et al. consist of three phases: the system initialization phase, the signing phase, and the message recovery phase. Here, we only focus on the basic scheme but our attack also applies to the generalized scheme.

System Initialization Phase: The system authority (SA) selects a large prime \(p\) such that \(p - 1\) has a large prime factor \(q\). SA also picks an integer, \(g\), with order \(q\) in \(GF(p)\). Let \(f(\cdot)\) be a secure one-way hash function. The SA publishes \(p\), \(q\), \(g\), and \(f(\cdot)\). Each user, \(U_i\), chooses a secret key \(x_i \in Z_q^*\) and computes the corresponding public key \(y_i = g^{x_i} \bmod p\).

To overcome the weaknesses in Tseng et al.’s scheme, Hwang et al. require the signer \(U_a\) to send \(t = g^k \bmod p\) in addition to \(s\) and \(r_1, r_2, \ldots, r_n\) to the verifier \(U_b\). Hwang et al.’s scheme then proceeds as follows:

The Signing Phase: When the signer \(U_a\) wants to send the authenticated encrypted message \(M\) to a designated recipient \(U_b\), she divides the message \(M\) into the sequence \(\{M_1, M_2, \cdots, M_n\}\), where \(M_i \in GF(p)\). Then, the signer \(U_a\) performs the following operations to generate the signature blocks for the message \(M\):

1. Pick a random number \(k \in Z_q^*\) and set \(r_0 = 0\), then compute \(y_b^k \bmod p\) and \(t = g^k \bmod p\).
2. Compute \(r_i = M_i \cdot f(r_{i-1} \oplus y_b^k) \bmod p\) for \(i = 1, \ldots, n\), where \(\oplus\) denotes the exclusive-or operator.
3. Compute \(s = k - r \cdot x_a \bmod q\), where \(r = f(r_1 || r_2 || \cdots || r_n)\), and \(\|\) denotes the concatenation operator.

Finally, \(U_a\) sends \((n+2)\) signature blocks \((t, s, r_1, r_2, \ldots, r_n)\) to \(U_b\) over the insecure channel.

The Message Recovery Phase: After the designated recipient \(U_b\) receives all the signature blocks

\(^{\dagger}\) The author is with the Electrical and Computer Engineering Department, Concordia University, Montreal, Quebec, Canada.

\(^{\dagger}\†\) The author is with Concordia Institute for Information Systems Engineering, Concordia University, Montreal, Quebec, Canada.

a) E-mail: m_rassla@encs.concordia.ca

DOI: 10.1587/transinf.E93.D.1301
(t, s, r_1, r_2, \ldots, r_n), she performs the following operations on them to recover the message blocks \{M_1, M_2, \ldots, M_n\}.

1. Compute \(r' = f(r_1 \mod p_1) \cdots r_n \mod p_n \). Then, check whether \(t^{x_0} = y_b^{y_{ab}^{x_0}} \mod p \) holds, where \(y_{ab} = y_a^{y_b} \mod p \). If \(t^{x_0} = y_b^{y_{ab}^{x_0}} \mod p \) holds, then \(U_b \) moves to the second step.

2. Recover the message blocks \{M_1, M_2, \ldots, M_n\}, as \(M_i = r_1 \cdot f(r_{i-1} \oplus t^{x_0})^{-1} \mod p_i \), for \(i = 1, \ldots, n \) and \(r_0 = 0 \).

3. The Proposed Attack

The following attack illustrates how an adversary can forge valid signature blocks that pass the recipient’s verification.

The Signing Phase: Assume that the adversary intercepts some signature blocks \((t, s, r_1, r_2, \ldots, r_n)\) that were previously sent from \(U_a\) to \(U_b\). The adversary can then alter the message flow as follows:

1. Generate random \(r_i \), \(1 \leq i \leq n \).
2. Calculate \(r = f(r_1 \| r_2 \| \cdots \| r_n) \).
3. Calculate \(t = t \cdot y_a^{y_{ab}} \mod p \).
4. Send \((t, s, r_1, r_2, \ldots, r_n) \) to \(U_b\).

The Message Recovery Phase: The designated recipient \(U_b\) calculates \(r'' = f(r_1 \| r_2 \| \cdots \| r_n) = r' \). Then, \(U_b\) verifies that

\[
 t^{x_0} = y_b^{y_{ab}^{x_0}} \mod p
\]

where \(y_{ab} = y_a^{y_b} \mod p \).

Our forgery attack ensures that \(U_b\) finds that the left hand side \(t^{x_0} \mod p \) is equal to the right hand side \(y_b^{y_{ab}^{x_0}} \mod p \). Therefore, \(U_b\) recovers the forged message blocks \{\(M_1, M_2, \ldots, M_n\)\}

\[
 M_i = r'_i \cdot f(r_{i-1} \oplus t^{x_0})^{-1} \mod p, \quad (2)
\]

for \(i = 1, \ldots, n \) and \(r_0 = 0 \).

The correctness of the proposed attack follows by noting that

\[
 t^{x_0} = (t \cdot y_a^{(r'-r)})^{x_0} \mod p
 = t^{x_0} \cdot y_a^{y_{ab}^{x_0-x_0}} \mod p \quad (3)
 = g^{x_0} \cdot y_a^{y_{ab}^{x_0-x_0}} \mod p
 y_b^{y_{ab}^{x_0-x_0}} \mod p
 = g^{x_0} \cdot y_a^{y_{ab}^{x_0-x_0}} \mod p
 = g^{x_0} \cdot y_a^{y_{ab}^{x_0-x_0}} \mod p\]

4. Conclusion

The improved authenticated encryption scheme proposed by Hwang et al. is not secure. Although in some situations the verifier might be able to decide whether the recovered message is meaningful or not, she still has to perform the decryption operations to make this decision. Because of the computational complexity associated with these decryption operations, an attacker can easily drive the network into a denial of service mode by over-flooding the communication links with forged message flows.

References

