Spectral Methods for Thesaurus Construction

Nobuyuki SHIMIZU†, Nonmember, Masashi SUGIYAMA††, and Hiroshi NAKAGAWA†, Members

SUMMARY Traditionally, popular synonym acquisition methods are based on the distributional hypothesis, and a metric such as Jaccard coefficients is used to evaluate the similarity between the contexts of words to obtain synonyms for a query. On the other hand, when one tries to compile and clean a thesaurus, one often already has a modest number of synonym relations at hand. Could something be done with a half-built thesaurus alone? We propose the use of spectral methods and discuss their relation to other network-based algorithms in natural language processing (NLP), such as PageRank and Bootstrapping. Since compiling a thesaurus is very laborious, we believe that adding the proposed method to the toolkit of thesaurus constructors would significantly ease the pain in accomplishing this task.

key words: synonym acquisition, synonym extraction, thesaurus, spectral clustering, graph laplacian

1. Introduction

Since the usage of thesauri is known to improve the performance of various tasks in natural language processing (NLP) [1] and information retrieval (IR) [2], [3], they are regarded as one of the most important resources in these fields. However, thesauri are one of the most laborious resources to create and maintain.

Imagine you are constructing a thesaurus and you have just created a thesaurus of a modest size. As we build thesauri from scratch, all thesauri are rather small and poorly designed at some point in their development. You wonder what other synonyms are missing from the thesaurus, and you would like a system that suggests a next synonym candidate you should consider adding to the thesaurus. While the traditional methods for synonym acquisition collects statistics from a large corpus and compare contexts of words for similarity, they do not use the thesaurus that you just compiled. What if you follow synonym relations? Given a thesaurus entry, you may find two words that are synonymous with the entry. Then perhaps these words are likely to be synonymous with each other as well. In the situation described above, it is not clear what path you should follow to find a synonym candidate. If you have enough entries in the thesaurus, it may be better to observe the network of synonyms, where a node represents a word and an edge is a synonym relation, and guess missing links in the network.

While there are studies on graph clustering involving synonyms, to the best of the authors’ knowledge, there has been no research on thesaurus expansion based on link analysis of synonym networks. On the other hand, if the network is not dense enough to suggest a synonym candidate, it may be better to use more traditional synonym acquisition methods based on the distributional hypothesis.

The objective of this paper is to explore the trade-off between network-based distance measures to more traditional corpus-based synonym acquisition measures, and shed a light on the conditions in which one is superior to the other. Our contribution is as follows:

First, we demonstrate that Graph Laplacian Embedding (GLE), a network based method, performs quite well in assigning true synonym candidates a coordinate that is close to that of the synonymous query solely using the existing synonym network that we intend to expand. This is surprising, as two synonyms of a word are not generally synonymous to each other. To compare GLE with corpus-based methods, we then vary the density of the existing synonymous connection from the query words to the rest of words in the network and see how the performance of a network-based method deteriorates as the graph gets sparser and less informative. Even then, we find that GLE works better than corpus-based method until two-thirds of connections are removed. This shows the effectiveness of utilizing existing synonymous networks as we expand a thesaurus. At the same time, we discuss a number of network-based algorithms for NLP and how the proposed spectral methods provide a unified view. Specifically, we advocate the use of non-principal eigenvectors of a transition matrix and give the interpretations of these vectors.

The remainder of this paper is organized as follows:

In Sect. 2, we review related work on synonym acquisition and network-based methods in NLP. In Sect. 3, we discuss the baseline and the spectral methods. We then review traditional corpus-based synonym acquisition methods in Sect. 4. The experimental settings are described in Sect. 5. Finally, in Sect. 6, we discuss the results and conclude in Sect. 7.

2. Related Work

The topic of lexical similarity enjoys a long history of research, some based on dictionaries such as WordNet [4], [5] and some on similarity/distance metrics and contextual features of a word [6], [7]. Although both approaches yield lex-
ical similarity, synonym acquisition is typically done without a dictionary since the objective of synonym acquisition is to construct or expand a thesaurus in a domain where such language resources do not exist.

To acquire synonyms without dictionaries, methods usually assume the distributional hypothesis [8], which states that semantically similar words share similar contexts. Based on this hypothesis, a synonym acquisition method roughly implements the following procedure. First, given a target word, we extract useful features from the contexts of the target. Features often include surrounding words or dependency structure. Second, to evaluate the similarity of words, we choose a similarity/distance metric and calculate the similarity/distance between the contexts of two given words. Many studies [9]–[12] investigate a variety of distance and similarity metrics on synonym acquisition performance. Among those considered for this paper, the examples of metrics known for higher performance in synonym acquisition include cosine similarity, Jaccard coefficient, and vector-based Jaccard coefficient. Another notable metric is skew divergence, a metric based on a Kullback-Leibler divergence. While not a synonym acquisition, other notable related research includes [13], which extended WordNet hyponym-hypernym relations.

As our proposed method is based on the eigenvectors of the graph Laplacian or transition matrix, we list a few applications of eigenvectors in NLP as well. Some applications of eigenvectors are explicit in the form of PageRank. PageRank [14] is based on the power method, an iterative algorithm for computing the principal eigenvector of a transition matrix. It finds a number of applications, such as word sense disambiguation [15] and automatic extractive summarization [16].

While there are many applications of the principal eigenvector, applications of the non-principal eigenvectors of a transition matrix are few and far between, with the exception of [17]. As they are clearly useful, we believe they warrant more applications. In our experiments, we show that the number of eigenvectors affects the performance of the system.

3. Network-Based Methods

We introduce two network-based methods in this section. In the first subsection, we introduce Squared Affinity Matrix (SAM), which forms the baseline. Next we explain Graph Laplacian Embedding (GLE) in the second subsection and provide a unified view of graph structure defined by the graph Laplacian and transition matrix. As we advocate using non-principal eigenvectors of a transition matrix, we state what they mean in detail.

The following is the notation common to all network-based models. Let n be the number of words we are considering and each word x_i is represented by a vector \mathbf{x}_i where i ranges from 1 to n. This includes the words in the thesaurus constructed so far as well as other words under consideration for inclusion to the thesaurus. The set of words in an arbitrary feature space are represented as a weighted undirected graph $G = (V,E)$ where the nodes $x_i, x_j \in V$ of the graph are words and an edge $e_{i,j} \in E$ is formed between every synonymous pair of words. Also, let W be an $n \times n$ sample-sample affinity matrix. This symmetric matrix represents the synonym relations in the thesaurus. If the words x_i, x_j are known to be synonymous so far, then $W_{i,j} = 1$. Otherwise $W_{i,j} = 0$. Note that both network-based methods are unsupervised. They simply define a distance over nodes in the network; they are not at all extensible to words outside the thesaurus, and no supervised learning takes place.

Squared Affinity Matrix and Cubed Affinity Matrix

A simple method for predicting is to compute $Y = WW$ and find words x_i, x_j such that $Y_{i,j}$ is non-zero. This is like saying my friend’s friend is my friend; two words that share a synonym are predicted to be synonymous with each other. As the elements of W are either zero or one, we initially treat the addition operator defined on the elements to be a binary OR operation. Unfortunately, this operation does not take account of the number of friends. In order to take account of the degree of friendship, we instead use the ordinary addition defined over real number and normalize the resulting figure to be between 0 and 1.

The computational complexity and required storage size of this approach in its naive implementation is $O(n^3)$ and $O(n^2)$, respectively. However, since W is sparse, its computational cost and memory space is much less in practice. We also consider Cubed Affinity Matrix (CAM) by computing $Y = WWW$. Once we obtain Y, given a query i, we sort the value $Y_{i,j}$ for each candidate j and evaluate the ranked list for synonym retrieval performance.

Graph Laplacian Embedding (GLE)

The next approach we take is based on Graph Laplacian Embedding (GLE) [18], [19].

In this approach, we aim to reduce the dimension d of \mathbf{x}_i to r ($1 \leq r \leq d$), such that the respective projections of \mathbf{x}_i and \mathbf{x}_j, denoted by $\phi(\mathbf{x}_i)$ and $\phi(\mathbf{x}_j)$, are close to each other if $W_{i,j}$ is 1. The objective function is stated as follows:

$$
\min_{\Phi = (\phi(\mathbf{x}_1),\ldots,\phi(\mathbf{x}_n))} \frac{1}{2} \sum_{i,j=1}^{n} W_{i,j} \|\phi(\mathbf{x}_i) - \phi(\mathbf{x}_j)\|^2,
$$

which can be equivalently expressed after a few lines of calculation as

$$
\min_{\Phi = (\phi(\mathbf{x}_1),\ldots,\phi(\mathbf{x}_n))} \text{trace}(\Phi D \Phi^\top),
$$

where $\Phi = (\phi(\mathbf{x}_1),\ldots,\phi(\mathbf{x}_n))$ is an $r \times n$ matrix with i-th column representing the projected vector $\phi(\mathbf{x}_i)$. L is an $n \times n$ graph Laplacian matrix, $L = D - W$, and D is an $n \times n$ diagonal matrix with i-th diagonal element $\sum_{j=1}^{n} W_{i,j}$.

Under constraints that $\Phi D \Phi^\top = I$ (to avoid rank degeneracy; I denotes the identity matrix) and $\Phi D \mathbf{1} = 0$ (to
remove a trivial solution; \(I \) denotes the vector with all ones), a solution of the above minimization problem can be analytically obtained as \(\phi(x_i) = (\psi_1(x_i), \ldots, \psi_r(x_i))^T \), where \(\psi_k(x_i) \) is the \(k \)-th element of the \(k \)-th eigenvector \(\Psi_k \) and \(\Psi_1, \ldots, \Psi_r \) are \(r \) eigenvectors associated with the \(r \) smallest positive eigenvalues \((\lambda) \) of the following \(n \)-dimensional sparse generalized eigenproblem:

\[
L \Psi = \lambda D \Psi.
\]

Finally, given a query \(i \) for each candidate \(j \), we compute the Euclidean distance between \(\phi(x_i) \) and \(\phi(x_j) \) and evaluate the ranked list of the candidates for synonym retrieval performance. Given a fixed \(r \), the computational complexity and memory requirement of the algorithm in its naive implementation is both \(O(n^2) \). However, since \(L \) is sparse, its computational cost and required memory space is much less in practice (e.g., ARPACK). Thus GLE is scalable to large datasets both in terms of computation time and storage space and would therefore be suitable for the current task of synonym prediction.

In the next two subsections, we show the equivalence of GLE to other methods (Normalized Cuts, Random Walk), to provide the unifying view of the graph based NLP methods.

GLE and Normalized Cuts

To provide insights into what \(\phi(x_i) \) represents, we explain the relationship between the eigenvector \(\Psi_1 \) (which is often called the Fiedler vector in spectral graph theory) and clustering based on normalized cuts. Suppose you would like to bi-partition a connected graph into two sub-graphs \(A \) and \(B \) by removing the edges between them. The total weight of edges to be removed is called cut: \(\text{cut}(A, B) = \sum_{i \in A, j \in B} W_{i,j} \).

Although clustering based on the minimum cut of a graph often produces reasonable partitions, this clustering criterion tends to cut a small set of edges to isolated nodes in the graph. To balance the size of partitions, Shi and Malik [20] have proposed the following normalized cut criterion.

\[
\text{Ncut}(A, B) = \frac{\text{cut}(A, B)}{\text{assoc}(A, V)} + \frac{\text{cut}(A, B)}{\text{assoc}(B, V)},
\]

where \(\text{assoc}(A, V) = \sum_{i \in A, j \in V} W_{i,j} \) is the total weight of nodes in \(A \) to all nodes in the graph. After a little algebra, one arrives at

\[
\min_{\Psi} \frac{\Psi^T L \Psi}{\Psi^T D \Psi}
\]

subject to \(\Psi \in \{1, -1\}^n \), \(b = \sum_{i \in B} D_{i,i} \) and \(\Psi^T D \Psi = 0 \). Once we relax \(\Psi \) to take on real values, the objective is reduced to (1). Since a graph Laplacian \(L \) is known to have zero as its minimum eigenvalue, the second minor eigenvector \(\Psi_1 \) corresponds to the relaxed solution for the partition assignments by normalized cuts. Thus graph Laplacian embedding \(\phi(x_i) \) has these soft partition assignments in its first coordinate. Note that other eigenvectors besides the second minor eigenvector could also be useful—after all, the third minor eigenvector and so on also reduce the objective and thus could represent the second best bi-partitioning and so forth.

GLE and Random Walk

We may also view the generalized eigendecomposition problem (1) in terms of random walk. By normalizing the matrix \(W \), we obtain the stochastic matrix \(P = D^{-1} W \) in which every row sums to 1. This matrix can be interpreted as defining a random walk on the graph, and thus the transition probability from the vertex \(x_i \) to \(x_j \) in one time step:

\[
Pr(v(t+1) = x_j | v(t) = x_i) = P_{i,j},
\]

where \(v(t) \) indicates the location of vertex at time \(t \). Next we relate this random walk view to the graph Laplacian. The solutions to the spectral problem

\[
P \Psi = \lambda \Psi
\]

correspond to (1) via the following proposition [21]: If \((\lambda, \Psi) \) is a solution of (2), then \((1 - \lambda), \Psi \) is a solution of (1). This result allows us to analyze the graph Laplacian embedding using the eigenvectors of \(P \) [22]. Let \(p(t, x_i | x_j) \) be the probability of random walk landing at a vertex \(x_j \) at time \(t \) given a starting vertex \(x_i \) at time \(t = 0 \). If the graph is connected, \(P \) is an irreducible and aperiodic Markov chain. It has the largest eigenvalue equal to 1 and the remaining eigenvalues are strictly smaller than 1 in absolute value. Then, regardless of the starting position \(x_i \), there is a stationary distribution \(\phi_0(x_j) \) such that

\[
\lim_{t \to \infty} p(t, x_i | x_j) = \frac{D_{i,j}}{\sum_k D_{i,k}} = \phi_0(x_j).
\]

\(\phi_0(x_j) \) corresponds to the eigenvector associated with the largest eigenvalue (equal to 1) of \(P \). We now consider the following distance between nodes \(x_i \) and \(x_j \) at time \(t \).

\[
dist_t^2(x_i, x_j) = \sum_{k=1}^n (p(t, x_i | x_k) - p(t, x_k | x_i))^2 w(x_k)
\]

with specific choice of \(w(x_k) = 1/\phi_0(x_k) \). This choice allows us to put more weights on low density points. Nadler et al. [22] call this diffusion distance. They also define the diffusion map at time \(t \), \(\phi_t(x_i) = ((1 - \lambda_1) \psi_1(x_i), \ldots, (1 - \lambda_r) \psi_r(x_i)) \) and show that the diffusion distance is equal to the Euclidean distance in the diffusion map space with all \((n-1)\) eigenvectors.

\[
dist_t^2(x_i, x_j) = \sum_{k=1}^{n-1} (1 - \lambda_k)^2 (\psi_k(x_i) - \psi_k(x_j))^2 = \| \phi_t(x_i) - \phi_t(x_j) \|^2.
\]

GLE is equivalent to the diffusion map at time \(t = 0 \). This is what we use in our experiments.
The analysis also shows the relation of our method (GLE) to PageRank. While PageRank [14] computes the principal eigenvector of a transition matrix, we mainly make use of non-principal eigenvectors which correspond to the diffusion distance.

4. Corpus-Based Methods

In this section, we describe the corpus-based synonym acquisition methods based on the distributional hypothesis, explaining the preprocessing of data and features, as well as various metrics we use to find the lexical similarity between target words.

4.1 Features

Since effectiveness of grammatical dependencies for synonym acquisition is well-known [7], [23], we use a syntactic parser called RASP Toolkit 2 (RASP2) [24] to extract contextual features for synonym acquisition. RASP2 analyzes the sentence and outputs the extracted dependency structure as n-ary grammatical relations [25]. After we identify contextual features of a word using the parser, for each pair of word x and contextual feature ϕ, we compute the raw co-occurrence count N(x, ϕ) from one whole year of New York Times articles (1997)†. New York Times articles (1997) consist of approximately 202 thousand documents and 131 million words.

While one whole newspaper corpus may yield more than 100,000 contextual feature types, many of them occur only once or twice. Since a large number of dimensions render similarity calculation impractical, we apply simple frequency cutoff to reduce the number of contextual features and synonym candidates we consider. Specifically, we remove any word x such that \(\sum \phi N(x, \phi) < 20 \) and any feature ϕ such that \(\sum x N(x, \phi) < 20 \) from the co-occurrence data. Once we apply this cut-off, we are left with 27,688 word types and 83,029 features. To assign weights to the features, we use pointwise mutual information: PMI(x, ϕ) = log(P(x, ϕ)/P(x)P(ϕ)). Then the weight of a feature is: wgt(x, ϕ) = max(PMI(x, ϕ), 0). As negative values are reported to lower the performance [10], we bound PMI by 0.

4.2 Similarity and Distance Metrics

As a baseline, we compare three similarity metrics (cosine similarity, Jaccard coefficient, vector-based Jaccard coefficient (Jaccardv)) and two distance metrics (Jensen-Shannon divergence [JS], skew divergence [SD99]).

Before we describe the metrics, we define some notations: Let \(\mathbf{x}_i \) be the feature vector corresponding to word \(x_i \), i.e., \(\mathbf{x}_i = [\text{wgt}(x_i, \phi_1) \ldots \text{wgt}(x_i, \phi_d)]^\top \), where \(\phi_i \) is a contextual feature. Let \(F(x) \) be the set of contextual features that co-occur with word x, that is, \(F(x) = \{ \phi | N(x, \phi) > 0 \} \).

Cosine Similarity:
\[
\frac{\mathbf{x}_1^\top \mathbf{x}_2}{||\mathbf{x}_1|| \cdot ||\mathbf{x}_2||}
\]

Jaccard Coefficient:
\[
\frac{\sum_{x \in F(x_1) \cap F(x_2)} \min(\text{wgt}(x_1, \phi), \text{wgt}(x_2, \phi))}{\sum_{x \in F(x_1) \cap F(x_2)} \max(\text{wgt}(x_1, \phi), \text{wgt}(x_2, \phi))}
\]

Vector-based Jaccard Coefficient (Jaccardv):
\[
\frac{\mathbf{x}_1^\top \mathbf{x}_2}{||\mathbf{x}_1|| + ||\mathbf{x}_2|| - ||\mathbf{x}_1||^2}
\]

Jensen-Shannon Divergence (JS):
\[
\frac{1}{2} KL(p_1||m) + KL(p_2||m)
\]

To define Jensen-Shannon divergence, we need to map a word \(x_i \) to a probability distribution: \(p_i(\phi) = N(x_i, \phi)/\sum_{\phi'} N(x_i, \phi') \) and \(m = (p_1 + p_2)/2 \). Jensen-Shannon divergence (JS) is a symmetric version of the Kullback-Leibler (KL) divergence which measures the distance between two probability distributions. Although the KL divergence suffers from the so-called zero-frequency problem, this version naturally avoids it.

Skew Divergence (SD99):
\[
KL(p_1||\alpha p_2 + (1 - \alpha) p_1)
\]

The skew divergence is an adaptation of KL divergence, which avoids the zero-frequency problem by mixing the original distribution with the target distribution. The parameter \(\alpha \) is set to 0.99 in our experiments [26].

Again, given a query \(i \) for each candidate \(j \), we compute the similarity/distance metric between \(i \) and \(j \). We then use the ranked list of the candidates for the evaluation.

5. Experimental Settings

To provide a good overall perspective before explaining experimental settings, we summarize the two approaches in the previous section.

Corpus-based methods exploit a corpus to fill the affinity matrix \(W(= Y) \) and it uses only the affinity matrix by itself without a further modification. The advantage of these methods is that the matrix is not as sparse as the affinity matrix for the network-based methods, which contain handcrafted synonymous relations.

On the other hand, network-based methods use the handcrafted affinity matrix containing known synonymous relations. As the existence of edges in such a network gives away the answer to the queries, we assume that there are no such edges given before the experiments, carefully constructing the training set and test set partitions. This prevents us from simply using the affinity matrix and forces us

†New York Times we use is a portion of the English Gigaword corpus obtainable from Linguistic Data Consortium. http://www.ldc.upenn.edu/Catalog/CatalogEntry.jsp?catalogId=LDC2003T05
to look at least one step further in the affinity matrix, be it SAM, CAM, or GLE. However, being hand-made, the entries of the affinity matrix are of much higher quality despite being sparse. This higher quality allows us to exploit the synonymous relations to improve the performance.

We now go on to clarify how we create the affinity matrix for the respective approaches.

5.1 Thesaurus and the Test Set

As a starting point of thesaurus construction, we combine a portion of three thesauri into one synonym network. We also choose the Longman Defining Vocabulary (LDV) as a set of query words whose synonyms are known.

For each word in LDV, we consult three existing thesauri: Roget’s Thesaurus, Collins COBUILD Thesaurus, and WordNet. We look up each LDV as a noun to obtain the union of synonyms. After we remove words marked “idiom”, “informal” or “slang” and phrases comprised of two or more words, the union is used as the reference set of query words. We omit the LDV word for which we find no noun synonyms in any of the reference thesauri. From the remaining 771 LDV words, we select 760 query words that had at least one synonym in the corpus.

We consider the training set for the network-based methods to be a bipartite graph, where in one partition L, there are 760 nodes (LDV entries in the thesaurus) and in the other partition R, 5736 nodes (words known to be synonymous to the entries). Between these partitions, there are 18,028 edges that represent synonymous relations. Thus, the affinity matrix for network-based methods is very sparse, with only 18,028 entries. To construct the test set outside LDV, we pseudo-randomly select 100 words with five or more synonyms and treat them as test queries, Q. Of these, we find 84 queries be also in R. As these queries are in R, they are adjacent to some words in L. We find that we have 318 edges between 84 words in $Q \cap R$ and 760 words in L. Let us call them bridge pairs. The objective is to find 1010 words synonymous with the queries in Q, with the condition that these 1010 words are outside L. Let this set of 1010 words be S. Since there is no overlap between S and L, the synonyms to the queries Q are not given away by the training set.

As there are some connections between 84 test queries and 5736 candidates in the synonym network, those words with a connection to the synonym network have a chance of synonym identification using GLE. Other words not connected to the network can only be retrieved using the corpus-based methods. There are 26,928 words in the corpus outside L, all of which are a synonym candidate to a word in Q. Note that, with this setting, words in Q are possibly synonymous with another word in Q. The relations between the training and test set is shown in Fig. 1.

As the training set for the corpus-based methods includes no handcrafted synonym relations, the corpus-based methods are free to use all words (27,688 word types) and associate them with features (83,029 of them) extracted from news texts. The affinity matrix for them is induced from this information rather than from a pre-built thesaurus.

The performance of corpus-based methods depends solely on the quality and quantity of the news corpus; the performance of the network-based methods depends on density of the handcrafted synonymous relations. To show the trade-off between the corpus-based methods and GLE, we randomly partition these 318 bridge pairs into 10 sets and see how the network-based methods perform as we remove the overlap between the thesaurus and the test set. This reduces the density of the existing synonymous connection from the query words to the words in the corpus. And the performance of GLE deteriorates as the graph gets sparser and less informative.

When computing GLE, we solved a simplified problem $L \Psi = \lambda \Psi$, not (1) since the results were almost the same. In addition, we used another trick to improve the performance, which is to normalize the embedding by the following operation: $\phi(x_i) := \phi(x_i) / \| \phi(x_i) \|$

5.2 Evaluation Measure

To evaluate we make use of Mean Average Precision, Average Rank of Last Synonym and TOP1 [27]. Every evaluation measure considered in this section analyzes a ranked list of synonym candidates, sorted by predicted similarity in ascending order.

The Average Precision (APR) measure evaluates the precision at every recall where it is defined and finds the threshold that produces the maximum precision for each of these recall values. Average precision is the average overall of the recall values greater than 0. In our experiments, we measure average precision on each query and report the mean of each query’s average precision as the final metric. A perfect prediction translates to APR of 1.0. The lowest possible APR is 0.0.

Average Rank of Last Synonym (RKL) measures how far down the ranked list we must go to find the last true synonym. Note that the lower the figure, the better the system is for this evaluation measure. If a query word has N synonyms in the ranked list, then the highest obtainable RKL value for the query word is N. RKL near 26,927 (the number of synonym candidates in the current setting) indicates poor performance of a synonym acquisition system.
TOP1 measures how likely we have correct synonyms at the top of the ranked list. To calculate TOP1 of a metric, we first score each query as follows. Given a query and a metric, if the word closest to the query word is a synonym, then the score is 1. If there are ties, all of the tied cases must be synonyms of the query. Otherwise, the score is 0. TOP1 is an average of the scores above overall queries. Its value ranges from 1.0 to 0.0. To achieve 1.0, perfect TOP1 prediction, a synonym acquisition system must place a true synonym at the top of the ranked list in every query.

6. Results

Table 1 shows how various corpus-based methods perform in terms of APR, RKL, and TOP1. As the figures in bold format indicate, Jaccard performed best in two evaluation measures APR and TOP1, and SD99 performed best in RKL. We take these metrics and compare them to the performance of network-based methods as the number of bridge pairs is increased from 31 to 318 by increments of 10%. The performance of network-based methods are shown in Table 2. As we examine a larger value for the parameter of Graph Laplacian Embedding, which is the dimension of the projected space \(r \), the APR kept increasing, with the largest examined \(r \) equal to 600. TOP1, on the other hand, peaked between 300 and 600.

The figures for Graph Laplacian Embedding are in bold if they are above the baseline performance provided by Jaccard and SD99. We notice that as the number of the bridge pairs increase, (around 60% with 190 nodes in the intersection) Graph Laplacian Embedding starts to give a clear edge over Jaccard in terms of TOP1. RKL of network-based methods are lower than those of corpus-based ones due to the sparseness of the affinity matrix compared to the feature vectors. As the candidate words include all words in the corpus, many completely unreachable from the thesaurus, this is expected. For SAM, Table 2 shows two variants: one with (OR) uses OR operation for addition and the other (+) uses the ordinary addition operation and rescales the resulting number to fit between 0 and 1 afterwards. While the simple heuristics of the squared affinity matrix (+) generally

Table 1: Comparison of corpus-based methods.

<table>
<thead>
<tr>
<th>Metric</th>
<th>APR</th>
<th>RKL</th>
<th>TOP1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Euclidean</td>
<td>0.00444</td>
<td>25556.89</td>
<td>0.0000</td>
</tr>
<tr>
<td>Manhattan</td>
<td>0.00411</td>
<td>25679.15</td>
<td>0.0000</td>
</tr>
<tr>
<td>Cosine</td>
<td>0.06954</td>
<td>12100.68</td>
<td>0.1900</td>
</tr>
<tr>
<td>Jaccard</td>
<td>0.07491</td>
<td>12630.72</td>
<td>0.2700</td>
</tr>
<tr>
<td>Jaccardv</td>
<td>0.07293</td>
<td>12313.08</td>
<td>0.2200</td>
</tr>
<tr>
<td>JS</td>
<td>0.00072</td>
<td>25685.60</td>
<td>0.0000</td>
</tr>
<tr>
<td>SD99</td>
<td>0.04848</td>
<td>11920.39</td>
<td>0.1800</td>
</tr>
</tbody>
</table>

Table 2: Comparison of network-based and corpus-based methods.

<table>
<thead>
<tr>
<th># bridge pairs (# connected queries)</th>
<th>Network-based</th>
<th>SAM (OR)</th>
<th>SAM (+)</th>
<th>CAM (+)</th>
<th>GLE (r = 600)</th>
</tr>
</thead>
<tbody>
<tr>
<td>31 (23)</td>
<td>APR</td>
<td>RKL</td>
<td>TOP1</td>
<td>APR</td>
<td>RKL</td>
</tr>
<tr>
<td>62 (39)</td>
<td>0.048</td>
<td>26388</td>
<td>0.10</td>
<td>0.027</td>
<td>26658</td>
</tr>
<tr>
<td>94 (50)</td>
<td>0.058</td>
<td>26120</td>
<td>0.15</td>
<td>0.046</td>
<td>26123</td>
</tr>
<tr>
<td>126 (63)</td>
<td>0.082</td>
<td>25852</td>
<td>0.19</td>
<td>0.061</td>
<td>25590</td>
</tr>
<tr>
<td>158 (68)</td>
<td>0.086</td>
<td>25682</td>
<td>0.22</td>
<td>0.060</td>
<td>25326</td>
</tr>
<tr>
<td>190 (72)</td>
<td>0.100</td>
<td>25586</td>
<td>0.24</td>
<td>0.066</td>
<td>25066</td>
</tr>
<tr>
<td>222 (76)</td>
<td>0.109</td>
<td>25317</td>
<td>0.29</td>
<td>0.070</td>
<td>25066</td>
</tr>
<tr>
<td>254 (79)</td>
<td>0.108</td>
<td>24779</td>
<td>0.35</td>
<td>0.068</td>
<td>24266</td>
</tr>
<tr>
<td>286 (81)</td>
<td>0.108</td>
<td>24242</td>
<td>0.36</td>
<td>0.065</td>
<td>23738</td>
</tr>
<tr>
<td>318 (84)</td>
<td>0.114</td>
<td>23703</td>
<td>0.42</td>
<td>0.067</td>
<td>23208</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Corpus-based</th>
<th>Jaccard</th>
<th>APR</th>
<th>RKL</th>
<th>TOP1</th>
<th>SD99</th>
<th>APR</th>
<th>RKL</th>
<th>TOP1</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0.074</td>
<td>12630</td>
<td>0.27</td>
<td>0.048</td>
<td>11920</td>
<td>0.18</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

The bold font indicates the portion of the table where the network-based methods outperform the corpus-based methods.

Table 3: Comparison of network-based methods on connected network.

<table>
<thead>
<tr>
<th># connected queries (# connected words)</th>
<th>Network-based</th>
<th>SAM (+)</th>
<th>GLE (r = 600)</th>
</tr>
</thead>
<tbody>
<tr>
<td>23 (4959)</td>
<td>APR</td>
<td>RKL</td>
<td>TOP1</td>
</tr>
<tr>
<td>39 (4975)</td>
<td>0.241</td>
<td>4468</td>
<td>0.256</td>
</tr>
<tr>
<td>50 (4986)</td>
<td>0.275</td>
<td>4493</td>
<td>0.300</td>
</tr>
<tr>
<td>63 (4999)</td>
<td>0.284</td>
<td>4526</td>
<td>0.301</td>
</tr>
<tr>
<td>68 (5004)</td>
<td>0.324</td>
<td>4566</td>
<td>0.323</td>
</tr>
<tr>
<td>72 (5008)</td>
<td>0.364</td>
<td>4391</td>
<td>0.333</td>
</tr>
<tr>
<td>76 (5012)</td>
<td>0.397</td>
<td>4231</td>
<td>0.381</td>
</tr>
<tr>
<td>79 (5015)</td>
<td>0.413</td>
<td>4012</td>
<td>0.443</td>
</tr>
<tr>
<td>81 (5017)</td>
<td>0.429</td>
<td>3856</td>
<td>0.444</td>
</tr>
<tr>
<td>84 (5020)</td>
<td>0.440</td>
<td>3721</td>
<td>0.500</td>
</tr>
</tbody>
</table>

The bold font indicates that the method shows statistically significant performance compared to the other method.
outperform in terms of APR, the Graph Laplacian Embedding method is clearly better than SAM in terms of RKL. On the other hand, CAM (+) which computes $Y = WWW$ does not perform well at all.

In order to remove the random effects caused by the unreachable words in the network, we examine the performance of network-based methods using the connected portion of the network. After all, if the network is not connected, we know that the network-based methods are unworkable and we may opt to use corpus-based methods. Table 3 illustrates the difference between SAM (+) and GLE in this case. To evaluate the statistical significance, we employed paired sample t-test. The bold font indicates that SAM shows a statistically significant performance advantage in terms of APR. On the other hand, GLE has significant advantage in terms of RKL throughout. While GLE appears slightly better at TOP1, none of the figures were statistically significant. Notice that when the graph is restricted to reachable nodes, the figure for RKL using GLE is simply half of all connected nodes. This allows the thesaurus constructor to examine only half the entries in the existing thesaurus to find missing synonymous pairs.

7. Discussion

We observed that when network-based methods find synonyms for a query, they tend to find a few of them at the same time. Perhaps due to the large number of contextual features, Jaccard finds synonyms more evenly across queries. In addition, some words seem to be distinctly easier for Graph Laplacian Embedding than Jaccard. For example, for the query word “pedigree,” Graph Laplacian Embedding with 31 bridge pairs finds 6 synonyms at the top. The 6 synonyms are “parentage,” “bloodline,” “genealogy,” “extraction,” “ancestry” and “lineage”. Jaccard finds none of them. This shows that when synonym relations surrounding the target query word are obvious to thesaurus constructors, but words themselves are rare, network-based methods work much better than Jaccard and other corpus-based synonym acquisition methods.

Another observation we made is the dismal performance of SAM when the addition operation is a binary OR, and significantly higher performance of SAM when the addition is over real numbers. These two observations indicate that the synonym relations tend to form a cluster within the network, perhaps forming a dense or nearly complete sub-graph, displaying a modular property of a network. Furthermore, Cubed Affinity Matrix (CAM), instead of Squared Affinity Matrix, also shows a dismal performance in this dataset. These observations indicate that the synonym relations tends to form a cluster within the network, perhaps forming a dense or nearly complete sub-graph, displaying a modular property of a network.

This explains the performance of GLE, which examines wider range of connections than SAM. As GLE reaches beyond one edge, it is capable of identifying the words located far to be synonyms, outperforming in terms of RKL.

On the other hand, modularity of the network strongly suggests that a word nearby is synonymous, and reaching further increases the inclusion of noises, thereby decreasing the overall performance, especially apparent in terms of reduced APR. While SAM ($Y = WW$) performs well, as we move to CAM ($Y = WWW$), it seems to quickly forget the nearby synonyms and becomes much like a popularity vote instead of similarity one. Considering the difficulty of extending SAM to CAM, GLE appears to be quite successful at using wider portion of the network, reducing RKL. We postulate that this is due to the GLE’s ability to model diffusion, keeping the essence of a similarity metric.

The thesaurus of the size we used in the experiment is modest, with less than 20,000 synonym pairs altogether. Since the study indicates perhaps only half as much data is required for network-based methods to be effective, this warrants an application for those who are constructing a thesaurus. As recall is important for manual thesaurus construction, GLE as well as SAM and the traditional corpus-based methods find their own place in this task.

8. Conclusion

We proposed a new approach that allows us to automatically expand an existing small thesaurus by suggesting synonym candidates for possible inclusions into the thesaurus. While more traditional corpus-based methods use contextual features obtained from the corpus outside the thesaurus to represent a word, to induce a similar vector representation of a word, our proposed method uses the structure of a synonym network that the thesaurus has.

Our experiments found that, expanding with a modest sized existing thesaurus is much easier with the proposed method based on Graph Laplacian Embedding than the traditional synonym acquisition methods. This proves that if you can expect a reasonable overlap between the existing synonym network and synonym candidates of the queries as well as the bridge pairs, the proposed Graph Laplacian Embedding is the method of choice for anyone who constructs a thesaurus and is in need of a method with a high recall. We have also given unifying interpretations of eigenvectors to allow intuitive interpretations of our method. Since the use of non-principal eigenvectors is still quite limited in NLP, we hope that our exposition proves useful for many researchers.

Acknowledgements

We would like to acknowledge and thank the anonymous reviewers. The section on the experiments, in particular, is significantly improved thanks to their comments.

References

Nobuyuki Shimizu received B.S. and B.A. degrees in Mathematics and Computer Science from Hope College, U.S.A. in 1997 and 1998 respectively. He received M.S. and Ph.D. degrees in Computer Science from The University at Albany, State University of New York, U.S.A. in 2001 and 2006 respectively. He is now a research associate at The University of Tokyo. His current research interest includes natural language processing, information retrieval and machine learning.

Masashi Sugiyama received the B.E., M.E., and Ph.D. degrees from Tokyo Institute of Technology, Japan in 1997, 1999, and 2001. In 2001, he was appointed as a research associate in the same institute, and from 2003, he is an associate professor. His research interests include machine learning and signal/image processing.

Hiroshi Nakagawa received the B.E., M.E., and Ph.D. degrees from The University of Tokyo, Japan in 1975, 1977, and 1980. From 1980 to 1999, he worked at Yokohama National University, and from 1999, he is a professor of Information Technology Center at The University of Tokyo. His research interests include machine learning and natural language processing.