Efficient Analyzing General Dominant Relationship Based on Partial Order Models

Zhenglu YANG†*, Lin LI††, Nonmembers, and Masaru KITSUREGAWA†††, Fellow

SUMMARY Skyline query is very important because it is the basis of many applications, e.g., decision making, user-preference queries. Given an N-dimensional dataset D, a point p is said to dominate another point q if p is better than q in at least one dimension and equal to or better than q in the remaining dimensions. In this paper, we study a generalized problem of skyline query that, users are more interested in the details of the dominant relationship in a dataset, i.e., a point p dominates how many other points and whom they are. We show that the existing framework proposed in [17] can not efficiently solve this problem. We find the interrelated connection between the partial order and the dominant relationship. Based on this discovery, we propose a new data structure, ParCube, which concisely represents the dominant relationship. We propose some effective strategies to construct ParCube. Extensive experiments illustrate the efficiency of our methods.

key words: skyline query, algorithm, dominant relationship analysis, performance evaluation

1. Introduction

The skyline query [3] has attracted considerable attention these years because it is the basis of many applications, e.g., multi-criteria decision making [3], user-preference queries [9], [11] and microeconomic analysis [17]. Skyline mining aims to find those points, which are not dominated by others, in a d-dimensional spatial dataset. This problem can be seen as a special class of pareto preference queries [11], convex hull [23] or maximum vectors [14]. Figure 1 shows one classic example of skyline query that customers are always interested in those “best” hotels that are better than others at least at one of the two criteria, the distance and the price, with smaller values. The skyline of the example dataset in Fig. 1 consists of a and c.

There are many issues related to skyline query, including the general full-space skyline points querying [3], [7], [13], [21], subspace skyline points mining [6],[28], [31], skyline points extracting in stream [18], [20], [27], Top-k and high-dimensional skyline points extracting [5],[6], mining skyline in distributed environments [2], [10], [29], approximate skyline querying [12]. All these issues, however, concerned only the pure dominant relationship among a dataset, i.e., a point p is whether dominated by others or not, and got those non-dominated ones as results.

Recently, Li et al. [17] proposed to analyze the dominant relationship in a business model that, users are more interested in the detail of the dominant relationship in a dataset, i.e., a point p dominates how many other points and is dominated by how many others. Here we show an example.

Example 1: Consider you are a manager of hotel company. You want to know the business position of a local hotel b in the current market with regard to your preference, i.e., price and distance to the beach, by checking how many other hotels are better/worse than b. For the sample hotels shown in Fig.1, you can deduct the conclusion that hotel b is better than 2 other hotels but worse than another 2 hotels with regard to your preference*

In real world, however, users are always interested in not only “how many” objects are dominating/dominated by a specific object, but also “whom” they are, which was not mentioned in [17]. This problem can be seen as a general dominant relationship analysis to the ones proposed in [17]. It is naively thought, can be easily solved by associating each object with its corresponding cuboid in DADA [17]. So when users query the dominant relationship, these objects will be extracted simultaneously. Nevertheless, due to a huge number of duplicate existence in DADA, the storage overhead and the query time will be unacceptable for users. In this paper, we aim at proposing efficient and effective methods to answer the “whom” problem. Because of the interrelated connection between the partial order and the dominant relationship, we propose a new data structure

*Note that the analysis here can be further used to determine the price of a hotel, which should be competitive in the current market while reserving the most profit.
called ParCube, which concisely represents the complete information of the general dominant relationship based on the partial order analysis. Specifically, we record the partial order as a Directed Acyclic Graph (DAG) for each cuboid in ParCube and propose efficient data structures and strategies to answer the general dominant relationship queries. Moreover, we introduce efficient strategies to construct ParCube. The experimental results and performance study confirm the efficiency and effectiveness of our strategies.

To illustrate the core idea of this paper, here we show a simple example. Figure 2 represents the partial order (encoded as DAG format) of the example dataset in Fig. 1 in 2-dimensional space. We can know the point b dominates the points d and e and is dominated by the points a and c, by counting the out-link and in-link of d, respectively.

Here we solve not only the how many problem, but also the whom problem. From this example, we know that the general dominant relationships of a dataset can be represented into their corresponding partial order representation (i.e., DAGs). In contrast, the DADA data structure [17] applies the grid-based index technique, which does not efficiently record the dominant relationship, as will be illustrated in the experimental evaluation.

Our contributions in this paper are as follows:

- We generalize the dominant relationship queries proposed in [17], as General Dominant Relationship Query (GDRQ). We find the interrelated connection between GDRQ and the partial order analysis.
- We propose a data cube, ParCube, which concisely represents the complete information of the general dominant relationship as DAGs based on the partial order for each cuboid. We introduce effective methods to construct the ParCube.
- We conduct comprehensive experiments to illustrate the effectiveness and efficiency of our methods.

The remainder of this paper is organized as follows. In Sect. 2, we discuss the related work. In Sect. 3, we present the preliminaries of this paper. A naive method based on existing strategy to answer GDRQ is introduced in Sect. 4. The computation of ParCube is presented in Sect. 5.1 and the query processing strategies for generalized dominant relationship analysis using ParCube is described in Sect. 5.2. The performance analysis are reported in Sect. 6. We conclude the paper and provide suggestions for future work in Sect. 7.

2. Related Work

2.1 Skyline Query

Skyline query was first introduced in [3]. The problem comes from some old classic topics, such as convex hull [23] and maximum vectors [14].

Skyline query algorithms can be classified into two categories. The first one is non-index based method, i.e., BNL [3], SFS [7], DC [3]. The second category is index based method, i.e., NN [13], BBS [21], SUBSKY [26]. As expected, the index-based methods have been shown to be superior over the non-index-based ones and furthermore, the index-based strategies can progressively return answers without having to scan the entire data input. Specially, SUBSKY [26] was proposed to compute low-dimensional Skylines and is the best algorithm for subspace skyline discovering. Based on the data distribution, SUBSKY creates an anchor point for each cluster, and builds a B+ tree on the L∞ distance between each object to its corresponding anchor. Then, SUBSKY scans the tree leaf nodes according to the ascending order of the points’s smallest value of d-dimension to get Skylines.

From the view point of dimension concerned, the existing algorithms can be also classified into two categories, i.e., full space based method [13], [21], and subspace based method [26], [28], [31]. Other related work on skyline mining includes mining skyline in distributed environments [2], [10], [29], skyline query in data stream [18], [20], [27], approximate skyline query [12], interesting skyline points in high-dimensional space [5], [6].

All the above works concerned only the pure dominant relationship and, outputted those points which are not “dominated” by others. Note that in addition to the original meaning in [3], “dominated” here can be a variant, i.e., k-dominant [6].

In contrast, Li et al. proposed to analyze a more general dominant relationship from a microeconomic aspect [17]. The users are always interested in not only the binary dominant relation between the points in a dataset, but also the statistical information, i.e., how many other points are dominating/dominated by a specific point. In [17], the authors proposed three basic Dominant Relationship Queries (DRQs) and constructed a data cube, DADA, to efficiently organize the information necessary to DRQs. Moreover, a novel data structure, D*-tree, was proposed to fulfill efficient computation for DRQs.

However, users are always interested in not only “how many” objects are dominating/dominated by a specific object, but also “whom” they are, which was not mentioned in [17]. This problem cannot be easily solved by using the methodologies proposed in [17] because of the large duplicate storage cost in DADA. In this paper, we propose effi-
cient data structure and strategies to solve such kind of general dominant relationship query based on our discovery that GDRQ has interrelated connection with partial order.

2.2 Partial Order Mining

Partial order has appeared in many computational models and there are a lot of applications involves with partial order issues, such as concurrent models [15], optimistic roll-back recovery [25], biology [16], security [24] and preference query [11].

In this paper, we mainly consider the problem that how to convert the spatial dataset into partial order representation, which are then queried to get the general dominant relationship efficiently. As far as we know, there is no work on this problem. An interesting study investigated the problem of mining a small set of partial orders globally fitting data best [19]. Particularly, [19] addressed sequence data. Very different from the problem studied here, [19] tried to find one or a (small) set of partial orders that fit the whole dataset as well as possible, which is an optimization problem. An implicit assumption is that the whole dataset somehow follows a global order. More recently, [4] were intended for discovering several small partial orders from a set of sequences instead of only one that describes all or most of the set. They proposed to use closed partial orders to summarize sequential data in a concise manner. Yet different from this paper, they did not further explore the partial orders for a specific purpose (i.e., dominant relationship extraction).

In this paper, however, we need to determine the partial orders given a spatial dataset. We propose a simple method of converting the spatial dataset to the corresponding sequence dataset and then, apply existing strategies such as that used in [4] with modification by considering skyline property to generate the partial orders.

3. Preliminaries

Given a d-dimensional space $S = \{s_1, s_2, \ldots, s_d\}$, a set of points $D = \{p_1, p_2, \ldots, p_n\}$ is said to be a dataset on S if every $p_i \in D$ is a d-dimensional data point on S. We use $p_i.s_j$ to denote the jth dimension value of point p_i. For each dimension s_i, we assume that there exists a total order relationship. For simplicity and without loss of generality, we assume smaller values are preferred [3] (i.e., MIN operation) in this paper.

Definition 1 (dominate). A point p is said to dominate another point q on S if and only if $\forall s_k \in S$, $p.s_k \leq q.s_k$ and $\exists s_l \in S, p.s_l < q.s_l$.

A partial order on D is a binary relation \preceq on D such that for all $x, y, z \in D$, (i) $x \preceq x$ (reflexivity), (ii) $x \preceq y$ and $y \preceq x$ imply $x = y$ (antisymmetry), (iii) $x \preceq y$ and $y \preceq z$ imply $x \preceq z$ (transitivity). We use (D, \preceq) to denote the partial order set (or poset) of D. We denote by \prec the strict partial order on D, i.e., $x \prec y$ if $x \preceq y$ and $x \neq y$. Given $x, y \in D, x$ and y are said to be comparable if either $x < y$ or $y < x$; otherwise, they are said to be incomparable.

The Definition 1 can be translated into the ordering context as follows:

Definition 2 (dominate in ordering context). A point p is said to dominate another point q on S if and only if $\forall s_k \in S$, $p.s_k \leq q.s_k$ and $\exists s_l \in S, p.s_l < q.s_l$.

The partial order (D, \preceq) can be represented by a DAG $G = (D, E)$, where $(\upsilon, \omega) \in E$ if $\omega \preceq \upsilon$ and there does not exist another value $x \in D$ such that $\omega \preceq x \preceq \upsilon$. For simplicity and without loss of generality, we assume that G is a single connected component.

Definition 3 (dominating set, DGS(p, D, S')). Given a point p, we use DGS(p, D, S') to denote the set of points from D which are dominated by p in the subspace S' of S.

Definition 4 (dominated set, DDS(p, D, S')). Given a point p, we use DDS(p, D, S') to denote the set of points from D which dominate p in the subspace S' of S.

The problem that we want to solve is as follows:

Problem 1 (GeneralDominantRelationship Query (GDRQ)). Given a dataset D, dimension space S' and a point p, find $\text{DGS}(p, D, S')$ and $\text{DDS}(p, D, S')$.

Note that a skyline point p has the following property: $\text{DDS}(p, D, S') = \emptyset$. In other words, the skyline query can be thought as a special case of the general dominant relationship query.

Example 1. Consider the 3-dimensional dataset $D = \{a, b, c, d, e, f\}$ in Fig. 3 (a). Given a query point b, dimension space $S' = \{D_1, D_2\}$, the dominating set $\text{DGS}(b, D, S') = \{d, e\}$ and the dominated set $\text{DDS}(b, D, S') = \{a, c\}$. We will use this dataset as a running example in the rest of this paper.

4. A Naive Method

To solve the problems defined in Sect. 3, a natural idea is to extend the framework proposed in [17]. In this section, we briefly introduce this naive strategy and then, illustrate its weak points.

The authors in [17] partition the data space by using gridding strategy. For example, Fig. 4 (a) shows a dataset in 2-dimensional space (i.e., $\{D_1, D_2\}$). In Fig. 4 (b), each grid
records the number of the points which current grid dominates. For instance, the gray grids are all those which dominates three points. Instead of recording each grid information, [17] proposed D∗-tree to record the compressed information (upper/lower bound of a region that dominates the same number of points). For example, the gray grids can be partitioned into three regions, which are represented by their upper bound, i.e., \(\{1, 4\} \), \(\{3, 4\} \) and \(\{4, 2\} \), respectively. The whole D∗-tree is shown in Fig. 4(c), which is constructed based on the rule defined in [17] (Definition 4.7). Fig. 4(d) shows the compressed information about the three gray regions, i.e., the lower bound (1st column), the upper bound (2nd column) and the number of points dominated (3rd column). Given a point \(P_{\text{query}} \), to get the number of the points \(P_{\text{query}} \) dominates, it needs to start from the root of the D∗-tree and move down the node with the upper bound that can dominate \(P_{\text{query}} \). Once it knows that \(P_{\text{query}} \) is contained in a region that the node dominates, the desired number of the points which are dominated by \(P_{\text{query}} \) can be output. Refer [17] for more detail.

Yet there are two issues arising when processing the general dominant relationship queries by using DADA’s strategy. Firstly, the “whom” problem cannot be efficiently solved. For example, although the gray regions in Fig. 4(b) all dominate three points, they have different dominating sets, i.e., \(\{b, d, e\} \) for blue and yellow regions and \(\{f, d, e\} \) for red region. Although by adding the dominating set into each node of the D∗-tree can naively answer the question (as shown in Fig. 5), this simple solution will introduce serious burden of data duplication problem. Therefore, the strategy of DADA is not appropriate for the general dominant relationship analysis problem. Another issue is that the search strategy in DADA while traversing the D∗-tree is inefficient, especially when the tree has many layers.

5. A Partial Order Based Method

In this section, we propose to efficiently apply the properties of the partial order to analyze the general dominant relationship. Specifically, we first introduce effective strategies to construct a partial order data cube (ParCube), which concisely represents the dominant relationship by using DAGs. Moreover, we propose efficient algorithms to answer the general dominant relationship queries based on ParCube. In the following section, we introduce our methods of constructing ParCube.

5.1 Constructing ParCube

As described in Sect. 3, the dominant relationship can be encoded in partial order representation (DAGs). In this section, we explain how to construct the partial order data cube (ParCube) with a spatial dataset input. As far as we know, there is no work on this problem. In this paper, we propose to apply strategies from another research context, sequential pattern mining [1], to get the partial order representation from a spatial dataset. The whole work flow is shown in Fig. 6. We propose a simple method of converting the spatial dataset to the corresponding sequence dataset in the first process and then, apply existing strategies such as that used in [4] with little modification in the second and third processes to generate DAGs from the transformed sequence dataset. Note that we mainly illustrate how to compute the cube for a dominating set since computation of a dominated set can be done in a similar fashion.

The first process in Fig. 6 is to convert the original spatial dataset to the sequence dataset. With a \(k \)-dimensional dataset, we simply get a \(k \)-customer sequence dataset, by sorting the objects in each customer (dimension) according to their value in ascending order. For example, Fig. 7(b) shows the converted sequence dataset of the example spatial dataset in Fig. 7(a).

Theorem 1. The converted sequence dataset records all the
sequential patterns in the same subspace. For example, in sub-
sequence dataset, i.e., \(\{ D_1, D_2 \} \), shown in Fig. 8 (a), we do not need to partition it because the sequential patterns are straightforward (i.e., the sequence itself). For example, given the sequence dataset as \(D \), we partition it into \(k \)-sequence datasets where \(k=2 \), i.e., \(\{ D_1, D_2 \} \), \(\{ D_1, D_3 \} \), and \(\{ D_2, D_1 \} \). PrefixSpan is then applied on them. Note that for \(k \)-sequence datasets where \(k=1 \), i.e., \(\{ D_1 \} \), \(\{ D_2 \} \), and \(\{ D_3 \} \), we do not need use PrefixSpan because the maximal sequential patterns are straightforward (i.e., the sequence itself). For \(k \)-sequence datasets where \(k=n \), i.e., \(k=3 \) for the dataset shown in Fig. 8 (a), we do not need to partition it because the number of the possible partitioned dataset is one, i.e., \(\{ D_1, D_2, D_3 \} \).

In fact, the process is the same as building common data cube, that we traverse every possible subspace (a \(k \)-sequence dataset, i.e., \(\{ D_1, D_2 \} \)), and apply PrefixSpan on it with minimum support equal to 100%.

To save space and convenient the query processing, we merge these sequential patterns as local maximal sequential sequences [1], which are not the subsequence of other sequential patterns in the same subspace. For example, in subspace \(\{ D_1, D_2 \} \), although there are many sequential patterns, i.e., \(\langle a \rangle, \langle b \rangle, \langle c \rangle, \langle d \rangle, \langle e \rangle, \langle f \rangle, \langle ab \rangle, \langle ad \rangle, \langle ae \rangle, \langle af \rangle \), and so forth. We only record the maximal sequential patterns, i.e., \(\langle afde \rangle, \langle abde \rangle \) and \(\langle cbde \rangle \), because all the other sequential patterns are subsequences of these three maximal sequential patterns.

The maximal sequential patterns of a subspace \(S \) record the dominant relationship between items in \(S \) (as be verified by Theorem 1, Theorem 2). For example, the pattern \(\langle afde \rangle \) indicates that \(a \) dominates \(f \), dominates \(d \), and dominates \(e \) in subspace \(\{ D_1, D_2 \} \).

The result data cube (SeqCube) got from process 2 for the example dataset is shown in Fig. 8 (b).

Theorem 2.
SeqCube records all the dominant relationship of the points in the sequence dataset \(D \).

Proof.
(Proof by Contradiction.) For simplicity, we only prove for a specific subspace of SeqCube. Assume to the contrary that there is a dominant relationship between two points, \(a \) dominates \(b \) in a subspace \(S' \), is not represented in the cuboid \(S' \) of SeqCube. This means that the sequential pattern \(\langle ab \rangle \) is not listed in \(S' \) of SeqCube, which contradicts our assumption that the sequential pattern mining process can find all the sequential patterns.

In process 3, the combinations of the local maximal sequential sequences are enumerated to generate partial orders with DAGs representation, by applying the method proposed in [4]. The result data cube (ParCube) got from process 3 for the example dataset is shown in Fig. 9 (b).

Theorem 3.
ParCube records all the dominant relationship of the points in the spatial dataset \(D \).

Proof.
Proof can be deduced based on Theorem 1, Theorem 2 in this paper and [4].

\(^1\)Due to limited space, we skip the detail of PrefixSpan here. Interested users can refer [22].
5.2 Querying ParCube Data Cube

The semantic meaning kept in the ParCube data cube is the key used to extract the general dominant relationship efficiently.

5.2.1 General Dominant Relationship Query (GDRQ)

Given a dataset \(D \), a query point \(P_{query} \) and a subspace \(S' \), the GDRQ is to compute the points dominate or dominated by \(P_{query} \), where \(P_{query} \in D \).

An important observation in this case is that, if \(P_{query} \) is in \(D \), all the general dominant relationship related to \(P_{query} \) can be easily discovered by traversing the DAG in a specific subspace.

As an example, Fig. 10 shows the DAG representation in subspace \(\{D_1, D_2\} \). To facilitate the counting process, the numbers of points dominating/dominated by current node (point) are inserted into each node. This process is executed in the precomputed-mode. Suppose the query point is \(b \), we can get the points dominated by \(b \) immediately, which is 2. Upon users are interested in whom these two points are, it goes downward following the out-link of \(b \), and gets the dominating set of \(b \) as \(\{d, e\} \).

In DADA [17] framework, however, it needs to traverse the D*-tree to get the corresponding class. For example, assume the query point is \(b \), the order of the traversed nodes in D*-tree, as shown in Fig. 4 (c), is \(\{(1, 1), (2, 1), (2, 2), (3, 4)\} \). Then it finds the dominating set of \(b \) by checking the class of \((3, 4) \). Obviously, DADA consumes more time compared with our strategy.

6. Experimental Evaluation and Performance Study

To evaluate the efficiency and effectiveness of our strategies, we conducted extensive experiments. We performed the experiments using a Intel(R) Core(TM) 2 Dual CPU PC (3 GHz) with a 3 G memory, running Microsoft Windows XP. All the algorithms were written in C++, and compiled in an MS Visual C++ environment. We conducted experiments on both synthetic and real life datasets.

Detailed implementation of the algorithms used to compare is described as follows:

1. \(SUBSKY \). \(SUBSKY \) was tested with the algorithm developed in [26], which is the state-of-the-art algorithm for subspace skyline query.

2. \(Naive \). \(Naive \) was tested with the extension of DADA [17], by storing the dominated/dominating points in the corresponding class, as explained in Sect. 4.

3. \(ParCube \). \(ParCube \) was implemented as described in this paper.

6.1 Datasets

We employ the synthetic data generator [3] to create our synthetic datasets. They have independent distribution, with dimensionality \(d \) in the range \([3, 6]\) and data size in the range \([10k, 50k]\). The default values of dimensionality were 5. The default value of cardinality for each dimension was \(50k \).

6.2 Skyline Query Performance

Because the skyline query is important and can be seen as a special case of the general dominant relationship query, in this section, we first evaluated the skyline query answering performance of \(ParCube \) compared with the state-of-the-art algorithm, \(SUBSKY \) [26].

Figure 11 (a) and 11 (b) show the skyline query time against number of points in the datasets and dimensionality, respectively. We can see that the \(ParCube \) algorithm outperforms the \(SUBSKY \) in both cases by up to an order of magnitude. This is because the \(SUBSKY \) algorithm needs to traverse the tree data structure (i.e., B-tree) to extract the
skyline on the fly. On contrary, ParCube pre-computes and stores the skyline points into partial order data structure, which can be easily extracted out because they exist in the first layer of DAG graph (no other points dominate them). Moreover, from the figures we can know that dimensionality has more effect on query performance compared with the number of points in the datasets.

6.3 Dominant Relationship Query Performance

To test the effect of the General Dominant Relationship query (GDRQ), we randomly selected 10 different points based on the synthetic dataset. Figure 12 (a) and (b) show the query time against number of points in the datasets and dimensionality, respectively. We can see that the ParCube approach is better than the Naive strategy. The performance of Naive becomes worse as number of points or dimensionality is larger, while ParCube remains almost the same. The reason is similar to that explained in Sect. 6.2. Naive needs to traverse the index data structure (i.e., D*-tree) to compare and extract all the required points. In contrast, ParCube only traverse the DAG graph to direct extract every node it passed and no comparison is necessary.

6.4 Index Data Structure Construction Performance

The efficiency of ParCube is rooted in the compressed data structure it discovers, partial order data cube (ParCube). In this section, we show the construction time for ParCube compared with cost of building other index data structure (i.e., D*-tree) in the Naive algorithm. Figure 13 (a) and (b) show the execution time for index building against number of points in the datasets and dimensionality, respectively. We can see that the ParCube is sensitive to the number of points in the datasets, that when the number gets larger, the performance of ParCube construction is worse than that of D*-tree building. However, as illustrated in Fig. 13 (b), D*-tree construction becomes worse as dimensionality grows, which means that D*-tree index building is more sensitive to the dimensionality compared with ParCube index building. The reason why the performance of ParCube construction is good, because in high dimensional space, the probability of one point dominates another one, is very low. Hence, the sequential pattern is very few in high dimensional space and the mining process can terminate quickly.

6.5 Effectiveness of Compression

In this experiment, we explored the compression benefits of ParCube compared with Naive method.

Figure 14 (a) and (b) show the compression effect on building the data cube by partial order representation (ParCube), compared with D*-tree. They illustrate that using the compressed data format, DAG, is very efficient on space usage. Similar to query performance, dimensionality has more effect on the compression factor compared with the number of points in the datasets.
In this paper, we have introduced General Dominant Relationship Analysis, which could not be easily solved by existing strategies. Due to the interrelated connection between the partial order and the dominant relationship, we have proposed a new data structure called ParCube, which concisely represents the complete information of the general dominant relationship based on the partial order analysis. We have introduced efficient strategies to construct ParCube. The experimental results and performance study confirmed the efficiency and effectiveness of our strategies. In the future, we will investigate how to further improve the efficiency while querying the general dominant relationship.

References

7. Conclusions

Fig. 14 Compression effect of ParCube against dimensionality and number of points in datasets.

Zhenglu Yang is a Research associate of the Institute of Industrial Science, The University of Tokyo. He received the Master degree in the above graduate school. His research interests include data mining and artificial intelligence. Specially, they are spatio-temporal data mining, graph mining (query), sequential pattern mining, skyline query, web mining, etc.

Lin Li is an Assistant professor in the Department of Computer Science and Technology, Wuhan University of Technology, China. She obtained the PhD degree in the Institute of Industrial Science, the University of Tokyo. Her research interests include web data mining, personalized search and query, and rank aggregation.

Masaru Kitsuregawa is a Professor and the director of center for information at Institute of Industrial Science, The University of Tokyo. He received the Ph.D degree in information engineering in 1983 from the University of Tokyo. His research interests include parallel processing and database engineering. He is a member of steering committee of IEEE ICDE, PAKDD and WAIM, and has been a trustee of the VLDB Endowment. He was the chair of data engineering special interest group of Institute of Electronic, Information, Communication, Engineering, Japan, the chair of ACM SIGMOD Japan, Chapter. He is currently a trustee of DBSJ.