J-STAGE Home  >  Publications - Top  > Bibliographic Information

IEICE Transactions on Information and Systems
Vol. E93.D (2010) No. 7 P 1991-1994

Language:

http://doi.org/10.1587/transinf.E93.D.1991

Regular Section

This paper discusses the issues involved in the design of a complete information retrieval system for DataSpace based on user relevance probabilistic schemes. First, Information Hidden Model (IHM) is constructed taking into account the users' perception of similarity between documents. The system accumulates feedback from the users and employs it to construct user oriented clusters. IHM allows integrating uncertainty over multiple, interdependent classifications and collectively determines the most likely global assignment. Second, Three different learning strategies are proposed, namely query-related UHH, UHB and UHS (User Hidden Habit, User Hidden Background, and User Hidden keyword Semantics) to closely represent the user mind. Finally, the probability ranking principle shows that optimum retrieval quality can be achieved under certain assumptions. An optimization algorithm to improve the effectiveness of the probabilistic process is developed. We first predict the data sources where the query results could be found. Therefor, compared with existing approaches, our precision of retrieval is better and do not depend on the size and the DataSpace heterogeneity.

Copyright © 2010 The Institute of Electronics, Information and Communication Engineers

Article Tools

Share this Article